
Mining Human Mobility in
Location-Based Social Networks

Huiji Gao
LinkedIn

Huan Liu
Arizona State University

SYNTHESIS LECTURES ON SAMPLE SERIES #1

C
M
&

cLaypoolMorgan publishers&



ABSTRACT

In recent years, there has been a rapid growth of location-based social networking services,

such as Foursquare and Facebook Places, which have attracted an increasing number of

users and greatly enriched their urban experience. Typical location-based social network-

ing sites allow a user to “check in” at a real-world POI (point of interest, e.g., a hotel,

restaurant, theater, etc.), leave tips toward the POI, and share the check-in with their

online friends. The check-in action bridges the gap between real world and online social

networks, resulting in a new type of social networks, namely location-based social networks

(LBSNs). Compared to traditional GPS data, location-based social networks data contain-

s unique properties with abundant heterogeneous information to reveal human mobility,

i.e., “when and where a user (who) has been to for what,” corresponding to an unprece-

dented opportunity to better understand human mobility from spatial, temporal, social,

and content aspects. The mining and understanding of human mobility can further lead to

effective approaches to improve current location-based services from mobile marketing to

recommender systems, providing users more convenient life experience than before. This

book takes a data mining perspective to offer an overview of studying human mobility in

location-based social networks and illuminate a wide range of related computational tasks.

It introduces basic concepts, elaborates associated challenges, reviews state-of-the-art al-

gorithms with illustrative examples and real-world LBSN datasets, and discusses effective

evaluation methods in mining human mobility. In particular, we illustrate unique character-

istics and research opportunities of LBSN data, present representative tasks of mining hu-

man mobility on location-based social networks, including capturing user mobility patterns

to understand when and where a user commonly goes (location prediction), and exploiting

user preferences and location profiles to investigate where and when a user wants to explore

(location recommendation), along with studying a user’s check-in activity in terms of why

a user goes to a certain location.
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Introduction

1.1 HUMAN MOBILITY BEHAVIOR

Human mobility, defined as “when andwhere a user (who) has been to forwhat”, reflects

the mobile aspect of human behavior in real world. Mining human mobility is affected by

various factors. As the most significant factor in “mobility”, location (“where”) plays an

important role in presenting humans’ daily life and revealing their mobile preferences for

studying human mobility.

1.1.1 LOCATION, LOCATION, LOCATION

Location, as the spatial characteristic of the world, has been considered as one of the most

important factors for life and business. For many businesses, getting the right location can

result in the difference between success and failure due to various location-based factors

such as transportation, local culture, and natural resources. For example, a restaurant needs

to consider the taste and dining habits of their customers, as well as consider the population

around its location to estimate the number of potential customers. When choosing the lo-

cation of a company, it is critical to consider its distance to local residents and communities

which directly relates to its future, as most people are more willing to work locally than

remotely and it is easier to recruit local workers.

When associated with humans, location is a key indicator of human mobility. The

study of human mobility patterns on GPS data indicates that on average, a person goes to

dozens of places a week and hundreds of places a year [34]. Such frequent human interactions

with geographical locations generate abundant information of human mobile preferences,

suggesting great opportunities to study human mobility for designing advanced location-

based services. For example, via capturing a user’s previously visited restaurants at one

location, one can recommend her new restaurants that she may be interested in for her

future visit at another location. The user could benefit from the recommendation by re-

ducing the exploring time with high possibility of enjoying nice food. The restaurant could

also benefit from the increasing number of customers. Under the situation of disaster relief,

by analyzing the normal-time human distribution at the disaster scene before a disaster,

relief organizations can make fast responses on evacuation routes, and estimate the required

resources (e.g., food, water, tents, medical assistances) of the affected area for effective .
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1.1.2 INFERRING HUMAN LIFESTYLES THROUGH LOCATIONS

Users visit different locations for vacations and entertainment. The large number of visited

locations record a user’s . They make it possible to analyze her lifestyle and understand

the “where” aspect of her mobility, such as the most frequently visited locations. Human

mobility is commonly treated as a . These footprints can introduce noise and complicate

the extraction of mobility patterns. Thus, we need additional information to help better

capture human mobility.

If temporal information (e.g., time-stamps of the user’s visited locations) is available,

one can study the “when” aspect of human mobility. For example, by chronologically con-

necting a user’s visited locations during the previous week, a week-long location trajectory

emerges. Such a location can be used to study like most frequent location sequences, e.g.,

shopping at a supermarket after having dinner at a restaurant. Another example is to study

the periodic patterns of human mobility. By observing when a user visits locations, one can

infer hourly patterns of a day, or daily patterns of a week, e.g., watching movie around

9pm on Saturday. The above two examples correspond to the chronological and periodic

mobility patterns embedded in the temporal information.

If social information (e.g., making friends, visiting a location with friends) is available,

one could infer the co-visiting behavior, and study the “social” aspect of human mobility.

Observing location-based content information, e.g., comments left at a restaurant, tips

towards a shopping mall, can help us explore human mobility through a content view and

understand the “what” aspect of human mobility regarding “what the user visits a location

for”.

1.1.3 MINING HUMAN MOBILITY WITH CELLPHONE DATA

The above examples exhibit a clear picture of mining human mobility from spatial, tempo-

ral, social, and content perspectives. Traditionally, such analysis is performed on cellphone-

based GPS data. In the mobile era, cellphones have been widely used to facilitate com-

munication and activities. A user’s cell phone is often with him most of the time. Thus,

cellphones are mobile sensors of human beings, while data collected through these sensors

provides information regarding those “where”, “when”, “who”, and “what” aspects. Such

data of human mobility has led to location-based applications such as traffic forecasting,

location prediction, and recommender systems. Typical cellphone-based contains a set of

time-stamped GPS points that a user has been to, along with the mobile activities such

as listening to music, generating Bluetooth connections, browsing web pages and watching

videos. Since such data is obtained from users’ cell phones through telecommunication ser-

vices, user privacy is a big concern which limits the data availability. Users may not feel

comfortable to share their mobile data even for research purposes. Thus, work based on

cellphone data commonly confronts the following limitations:
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1. Small-Scale Mobility Data

Cellphone-based GPS data generally contains a small number of users due to privacy

concerns, which usually cannot be publicly available. The observations on such data

may be biased due to certain factors such as region, demography, gender, age, and

education. For generating statistically significant conclusions especially in big data

era, more data are encouraged when analyzing human mobility.

2. Absence of Semantic Indications

GPS data store location information in terms of geographical coordinates, i.e., lati-

tude and longitude. It is not straightforward to associate such coordinates with real-

world points of interest, e.g., restaurants, hotels, theaters, malls. Generally, semantic

information of locations is not a available on GPS data. Thus, it is impractical to

investigate the “what” aspect of human mobile behavior without such information.

Although one can use third-party library to map coordinates into POIs, it does not

work well on places with dense POIs, as it is difficult to distinguish POIs close to each

other based on geographical coordinates. Furthermore, via observing that a user has

stopped at a geographical point, it is not easy to determine whether he was visiting

the corresponding POI or just passing by.

3. Insufficient Social Information

Social connections are not easily obtained from GPS data. Generally, social connec-

tions can be inferred through the history of one’s phone calls, messages, or bluetooth

connections. However, it is difficult to collect this kind of data due to the user privacy

concerns. There are work studying social connections on GPS data with small number

of users participated who grant permissions to use their data. It is not encouraged

to make such data for other researchers to reuse. In addition, social information ob-

tained through this way may be of low quality. For example, Bluetooth may not be

commonly used thus connections inferred through this way may be biased; users who

have phone communications do not necessarily indicate their friendships, not to men-

tion that they share common interests (a general assumption of social theories used in

social recommendation). On the other hand, social activities, such as friends visiting

the same location together, are not available on GPS data either.

1.2 LOCATION-BASED SOCIAL NETWORKS

In recent years, location-based social networks (LBSNs) have attracted much attention from

both academia and industry. It exhibits many advantages over the limitations of GPS da-

ta. Generally, a social network is a social structure consisting of nodes (e.g., individuals or

organizations) and relationships (e.g., friendship or siblings) among these nodes. Social net-

works can be built through social networking services such as Facebook, Twitter, Linkedin,

Google+, etc. Location-based social networks refer to one type of social networks with ge-
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ographical properties embedded, which is usually generated through using location-based

social networking services.

1.2.1 LOCATION-BASED SOCIAL NETWORKING SERVICES

Location-based social networking services, e.g., Foursquare1, Yelp2, and Facebook Places3,

have emerged in recent years and become popular since 2010. The first commercial location-

based social networking service available in the U.S. is Dodgeball4, launched in 2000. It

allowed users to “check in” by broadcasting their current locations through short messages

to their friends who were within a 10-block radius; users could also send “shouts” to or-

ganize a meeting among friends at a specific place. Dodgeball was acquired by Google in

2005. In 2009, Google launched its location-based social networking services named “Google

Latitude”, while the founder of Dodgeball launched a new location-based social networking

service “Foursquare” in the same year. Foursquare utilizes a game mechanism in which

users can compete for virtual positions, such as mayor of a city, based on their check-in

activities. It has reached 50 million users by May, 20145, becoming one of the most suc-

cessful location-based social networking sites in the United States. Facebook also launched

its location-based service, namely Facebook Places in 2010, and acquired another popular

LBSN service, Gowalla6, at the end of 2011.

Location-based social networking services maintain a large POI database and allow a

user to “check-in” at a POI with his smartphone regarding to his current physical location.

The user can also leave tips and share “check-in” experience with his online friends, along

with creating the opportunity to make new friends. As reported by the Pew Internet and

American Life Project, smartphone ownership among American adults rose from 35% in

2011 to 46% in 2012, while 18% of smartphone owners used location-based social networking

services [119]. It is anticipated that location-based marketing in North America will grow

from $1.8 billion in 2013 to $3.8 billion in 2018 [65]. Such a rapid growth of location-based

social networking services has provided abundant information and greatly enriched the

availability of human mobility data, making it possible to study human mobility on a large

scale.

The “check-in”, recognized as a location tagging function, has been considered as a

distinguishing feature between location-based social networks and general social networks

(GSNs). However, the boundary between these two types of social networks recently be-

comes blurry. By incorporating the location tagging function into general social networks,

it could be ambiguous to differentiate a LBSN from a GSN. For example, Twitter, as a

1http://foursquare.com/
2http://www.yelp.com/
3http://www.facebook.com/about/location/
4http://en.wikipedia.org/wiki/Dodgeball
5https://foursquare.com/about
6http://en.wikipedia.org/wiki/Gowalla



1.2. LOCATION-BASED SOCIAL NETWORKS 5

Figure 1.1: Check-in actions connect the real world and a virtual world

typical general social network, launched Twitter Places which allows a user to tag their

locations when tweeting as well as viewing tweets from a particular location [50]. Yelp en-

abled check-ins in 2010 and became a new LBSN after Foursquare and Gowalla [84]. In the

future, with the rapid development of mobile technologies, it can be expected that LBSN

may eventually be integrated into a location-based feature of a general social network.

1.2.2 REAL WORLD VS. VIRTUAL WORLD

Typical location-based social networking services leverage Web 2.0 technology and mobile

devices to facilitate a user’s daily life when exploring the city and neighborhood. They

provide various activities for a user to perform, such as “checking-in” at current locations,

seeking local points of interest and discounts, leaving comments on specific places, making

friends, and sharing check-in experience online. The “check-in” reports a user’s visit at a

physical place, and publishes such visit as an online post to let his friends know.

“Check-in” actions bridge the real world and the virtual world. Compared with many

other online activities (following, liking, grouping, voting, tagging, etc.) that interact with

the virtual world, “check-in” reflects a user’s geographical action in the real world, residing

where the online world and real world intersect, as shown in Figure 1.1. Thus, data col-

lected from location-based social networks provides an ideal environment to analyze users’

real world behavior through virtual media, which could potentially improve location-based

services such as mobile marketing [5, 6, 83], disaster relief [23, 31, 35, 114], traffic forecast-

ing [7, 20], and location recommendation [30, 104, 116].

1.2.3 W 4 INFORMATION LAYOUT

Generally, location-based social networks consist of social connections among users and

“location-based” context including geographical check-in POIs, check-in time stamps, and
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5/1/2012 6/1/2012 7/1/2012 8/1/2012 9/1/2012

TipsPhotos

VideosAudios
Content Layer

Social Layer

Geographical 

Layer

Timeline

Figure 1.2: The information layout of location-based social networks (based on ([24]))

user/location-associated content (e.g., descriptions, tips, pictures, videos, etc.). Such ele-

ments reflect aspects of human mobility in a “W4” (i.e., who, when, where, and what)

information layout, corresponding to four distinct information layers as shown in Figure 1.2.

The geographical layer contains the historical geographical locations of users, the

social layer contains social friendships among users, the temporal layer indicates the time

stamps of the users’ “check-in” behavior, and the content layer consists of user-generated

content such as tips about different places, photos taken during check-in, and location

descriptions. Location-based social network data has an additional geographical layer which

is not available in traditional online social networks [43], and an explicit social layer which is

not available from mobile phone data [12]. The unique geographical property and the social

network information presents new challenges for mining human mobility on location-based

social network data, since traditional approaches on social network or mobile phone data

may fail due to the lack of pertinence.
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The “W4” defines six different types of networks, i.e., location-location, user-user,

content-content (e.g., word-word), user-location, user-content, and location-content net-

works. Each network can be associated with the temporal layer, indicating more opportu-

nities and challenges for mining human mobility on LBSNs from spatial, temporal, social

and content perspectives. Therefore, data mining techniques specifically designed for LB-

SNs can efficiently deal with these distinct properties, and help understand human mobility

for research and application purposes.

1.3 COMPUTATIONAL TASKS

In this section, we discuss research and application opportunities on LBSNs, and introduce

two fundamental computational tasks for mining human mobility with LBSN data.

1.3.1 RESEARCH AND APPLICATION OPPORTUNITIES

The rapid development of location-based social networks in recent years provides researchers

with opportunities to investigate human mobility from LBSN data w.r.t. various perspec-

tives including spatial, temporal, social, and content. Many mobile applications have been

developed to explore human’s mobile interests and facilitate their daily life. In this section,

we introduce a set of research and application topics on LBSNs.

Recommender Systems

They are designed to recommend items to users in various scenarios such as watching

movies, shopping items, exploring restaurants, and attending social events such as dat-

ing. Since the development of city and neighborhood offers more choices of life experience

than before, recommendation is indispensable to help users filter uninterested items and

save time in decision making. Recommender systems on location-based social networks

have become popular in recent years, while location (or POI) recommendation and friend

recommendation are the major recommendation tasks.

In location recommendation, locations are recommended to a user according to his

mobile interests. Contexts can be considered such as the current time and geographical

position of the user, the user’s previous check-ins, and the user’s social friends’ check-

ins [30, 90]. Generally, the recommended locations in this task are new locations. Figure 1.3

illustrates a location recommendation scenario. A user u went to location L1, L2, and L3

at time t1, t2, and t3, the location recommendation system recommends a new location

L4 /∈ {L1, L2, L3} to the user at time t4. More will be discussed in Chapter 4.

Friend recommendation analyzes the common interests between users under the as-

sumption that friends share more interests than non-friends. Such a property is derived

from homophily [68], a social theory indicating that users tend to associate with others

who behave in similar ways. Figure 1.4 illustrates a scenario of friend recommendation.

Users are represented by pins on the map and the red links denote social connections. Each
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User U

L1 L2 L3
“New” 

Check-in 

at location l

t1 t2
t3 t411

t

Figure 1.3: Location recommendation on LBSNs (based on ([28])). A user went to location

L1, L2, and L3 at time t1, t2, and t3, the location recommendation system aims to recommend

a new location to him at t4.

user is associated with geographical information (e.g., current position), behavior infor-

mation (e.g., check-in history), and network information (e.g., existing friendships), these

types of information can be leveraged to study the user’s personal preferences for friend

recommendation.

Geographical Topic Analysis

It investigates the semantic meaning of geographical regions, in order to enrich the func-

tional description of locations for designing advanced location-based services. The diversity

of geographical regions can be studied through the different distributions of location-based

topics over areas. For example, coast, dessert, and mountain are the three typical topics

which cover different areas in the USA, as shown in Figure 1.5. Researchers utilize com-

putational models to explore the spatial-temporal patterns of topical content [40, 74, 106].

Online systems, such as Livehoods7, have also been developed to explore the social dynam-

ics of the city and reveal the different characterized regions [19]. In Livehoods, a clustering

approach is adopted to cluster check-in locations from millions of check-ins into different

areas, with each area representing a lifestyle character in the corresponding area.

Event Detection

It automatically detects events from large-scale and sparse datasets. For example, disaster

event detection is one of the widely studied topics. During a disaster like earthquake or

tsunami, messages posted from the disaster scene on LBSNs can be used to predict the dis-

7http://livehoods.org/
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Figure 1.4: A sample of geo-active friends in NYC (based on ([77])). The links between users

represent friendships.

(a) coast (b) dessert (c) mountain

Figure 1.5: Three typical geographical topics (coast, dessert, and mountain) in the USA (based

on ([106]))
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aster impacts, such as duration, degree, and coverage. Various systems have been proposed

to detect and report disasters. For instance, Toretter [79] is an earthquake reporting system

in Japan to report earthquakes. It considers each user who tweets about a target event as

a sensor of the event, and tracks the event center and trajectory with a spatio-temporal

model. Figure 1.6 presents an estimation of affected areas during Japan earthquake in Au-

gust 2009. TweetTracker8 is an online tool designed to detect, track, analyze, visualize, and

understand events on Twitter. It organizes tweets into events to facilitate near real-time

tweet aggregation and to support search and analysis of the collected tweets. The sys-

tem also allows a variety of visualizations based on this information, including streaming

geo-spatial visualization, word cloud summarizations, post-event investigations in pseudo

real-time, automatic translation of non-English tweets, and keyword trending and compar-

ison. Figure 1.7 shows an illustrative screenshot of TweetTracker. Disease spread detection

systems have also been developed to capture the spread of disease [78]. Figure 1.8 visualizes

a sample of friends in New York city. The red links between users represent friendships,

and the colored pins show their current geographical locations on a map. The highlighted

person is complaining about her health, and hinting about the specifics of her ailment. The

system investigates the impact of such a person on the health of his friends, and of people

around him.

Mobile Security and Privacy

Location sharing is a fundamental function of location-based social networking services.

Users share their locations by checking in on location-based social networking sites to let

their friends know where and when they are. The location awareness can then form location-

based social networks and enhance the user’s social connections. For example, a user may

want to hang out with his friend after knowing that he is nearby through his check-in

status. While location sharing significantly enhances user experience in social networks, it

also leads to privacy and security concerns. In recent years, location privacy on location-

based social networks has attracted more and more attention from both academia and

industry. It has been discovered that privacy is a critical concern for user when considering

adopting location sharing services [18, 36, 51, 95]. When using location sharing services,

some users would like to share their location with friends for social purposes, while other

users may believe that sharing personal location discloses one’s personal preferences, which

may cause potential physical security risks. Therefore, it is inevitable to consider privacy

management when designing location sharing applications.

To improve privacy management on location-based services, one of the major chal-

lenges is to understand why people are using location sharing services and under what

circumstances they do not want to share locations. It has been analyzed on Dodgebal-

l that location-based social services do influence the way people experience urban public

8http://tweettracker.fulton.asu.edu/
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Figure 1.6: An estimation of affected areas during Japan earthquake in August 2009 (based

on ([79]))

Figure 1.7: TweetTracker for disaster relief (based on ([49])). Tweets are organized into events

and visualized on crisis map to facilitate disaster relief with search and analysis tools.
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Figure 1.8: An example of disease spread (based on ([78]). The links between users represent

friendships, and the pins show their geographical locations. The highlighted person complains

about her health and hints the symptom. Disease spread detection systems investigate the

impact of such a person on the health of her friends and people around her.
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places and their social relations [44]. It has also been explored on how and why people

use Foursquare w.r.t. five factors, i.e., badges and fun, social connection, place discovery,

keeping track of places, and competition with themselves [59]. Generally, the majority of

users had few privacy concerns, and users chose not to check in at specific locations mainly

because the places were embarrassing, non-interesting or sensitive. Mobile applications have

also been developed to help manage privacy on LBSNs. “Locaccino”9 is a location sharing

application focusing on privacy control based on the Facebook social network [76, 94]. A

Locaccino user can request the location of his Facebook friends. It allows a user to set

detailed location sharing privacy preferences such as when and where his location can be

visible to a set of pre-specified users.

1.3.2 HUMAN MOBILITY: REPETITIVE VS. COLD-START

The above section highlights several research and application opportunities for studying

human mobility from different perspectives with large-scale LBSN data. Since location is

the most critical element in reflecting a user’s mobility patterns. To study human mobility,

it is inevitable to start from the location aspect w.r.t. check-in actions.

One of the most significant properties of check-in behavior is the user-driven prop-

erty [72]. When using location-based social networking services, a user can choose where

and when to check-in. It has been discovered that a user’s check-ins follow a power-law

distribution on LBSNs, i.e., a user goes to a few places many times and to many places a

few times [27], indicating that users would like to (1) return to visited locations, resulting

in the repetitive check-in behavior; or (2) explore new locations, resulting in the cold-start

check-in behavior.

Predicting whether a user would like to return to a previously visited location is

generally corresponding to a computational task on LBSNs, “location prediction”. Various

mobility patterns discovered from LBSN data, such as spatial trajectories [70, 86], periodic

patterns [93], and spatio-temporal patterns [28, 81], are leveraged for this task. On the

other hand, when a user explores a city and wants to try new points of interest, “location

recommendation” is the task that can facilitate users on such purpose. In this work, we focus

on the above two basic types of human mobility patterns: returning to visited locations and

exploring new locations to visit.

The remainder of this book consists of three chapters. Chapter 2 discusses the basic

data structures and properties on LBSN data, together with the fundamental discoveries of

human mobility patterns exhibited on LBSNs. Chapter 3 introduces methodologies of loca-

tion prediction for mining human mobility w.r.t. determining which visited location a user

would like to return. Chapter 4 expands further on location recommendation approaches

and discuss how to facilitate a user’s exploration on new locations through the analysis of

9http://locaccino.org/
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his LBSN contexts. In Chapter 5, we discuss several topics that are beyond the Human

Mobility, such as location privacy issues.
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C H A P T E R 2

Analyzing LBSN Data

Location-based social network data contains various types of information, providing us with

unprecedented opportunities to study human mobility. In this chapter, we introduce the

properties of data collected from typical LBSN websites, and human mobility patterns.

2.1 A CHECK-IN EXAMPLE

Location-based social network data is generated through users’ check-ins. When a user

performs a check-in action through LBSN services, it generates a check-in record. Figure 2.1

shows a typical check-in record, where four “W” elements are present.

• Who

A check-in contains a “who” element, e.g., “Felix” in this example. Social information

is also present, i.e., “Jiliang” is a friend of “Felix”.

• When

The time of the check-in tells us “when” it happens, consisting of the temporal infor-

mation, e.g., “August 1, 2013”.

Figure 2.1: A check-in example with four “W” elements
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• Where

The location of a check-in action shows “where” it happens, indicating the geographical

information, e.g., “Shanghai Flavor Shop” in “Sunnyvale, CA”.

• What

The content such as comments, tips, and location descriptive tags presents “what”

the users do at this location, corresponding to the content information, e.g., “Best

pan-fried pork bun and Shanghai wonton on the west coast”. “Liking” indicates the

user’s sentiment regarding the location.

The above example presents the key elements of a check-in action. More information

could be obtained through the APIs of the LBSN service provider, e.g., accurate geograph-

ical position, location descriptive tags, user tips, list of social friends, etc.

Below we introduce in detail the structure of typical LBSN data.

2.2 STRUCTURE OF LBSN DATA

Typically, LBSN data can be organized as four types regarding users’ check-ins, user profiles,

social networks, and location descriptions, as shown in Figure 2.2.

• Check-ins

The check-in action table contains records of check-ins. Each row represents a check-in

action containing user, check-in location, check-in time, and user-generated content,

such as comments, tips, or likes if available. The example in Figure 2.2 shows two

check-in actions. Depending on different location-based social networking services,

information may vary.

• User Profiles

A user profile contains a user’s personal information, including his home location

region, personal interests described by tags, etc, as shown in Figure 2.2. This part of

information is generally private and can be determined by the user through LBSN

websites regarding how much to release to the public.

• Social Networks

Users’ social information is stored in a social network table, with each row representing

a connection between two users. The example in Figure 2.2 lists the social connections

of user #505 and #399. Generally, social connections on LBSNs are undirected.

• Location Descriptions

The check-in locations are stored in the location description table. Each row contains

information such as name, latitude/longitude, address, category, rating, and tags.

This data structure is commonly seen at many LBSN websites, including Foursquare,

Yelp, Gowalla, and BrightKite. Table 2.1 lists some typical LBSN datasets that are available
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Figure 2.2: The structure of LBSN data contains users’ check-ins, user profiles, social networks,

and location descriptions. The users and locations are represented as anonymous IDs.
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for research. Some related projects are shown together with these datasets as they used the

corresponding datasets. These datasets are all anonymized for privacy concerns.

Table 2.1: Location-based Social Networks Datasets

Dataset Duration Download

Geolife [115] Apr. 2007 - Aug. 2012
http://research.microsoft.com/en-us/

projects/geolife/

Gowalla [17] Feb. 2009 - Oct. 2010
http://snap.stanford.edu/data/

loc-gowalla.html

Brightkite [97] Apr. 2008 - Oct. 2010
http://snap.stanford.edu/data/

loc-brightkite.html/

Twitter [16] Sep. 2010 - Jan. 2011 http://infolab.tamu.edu/data/

Yelp [60] Oct. 2004 - Jan. 2015
http://www.yelp.com/dataset_

challenge/

TweetTracker [49] Since Oct. 2010 http://tweettracker.fulton.asu.edu//

We introduce next LBSN data properties.

2.3 DATA PROPERTIES

Compared to traditional cellphone data from GPS trackers or telecommunication compa-

nies, LBSN data has three distinct properties.

2.3.1 SOCIO-SPATIAL PROPERTIES

Geographical properties and social connections are two special factors on LBSNs. The

geographical properties reflect human behavior in the real world, distinguishing location-

based social networks from content-based social networks [80]. The explicit social network

information, which is generated by users through “add friend”, distinguishes location-based

social networks from cellphone data. On cellphone-based GPS data, social information

is commonly collected via user study [21, 53] or inferred from communication networks

through calling/messaging records or bluetooth connections [96].

Furthermore, social networks and geographical properties, are two correlated elements

that affect each other [99, 110]. For example, a user is more likely to befriend other users

who are geographically close, e.g., co-workers, colleagues. Likewise, a user may check-in at

a location due to the influence from his friends, such as following friends’ suggestions to

visit a restaurant, going out with friends for shopping. These correlations result in a new

property, commonly referred to as socio-spatial properties.
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Figure 2.3: Empirical Cumulative Distribution (CDF) of the geographic distance between all

users and between connected friends for three LBSN datasets of Brightkite, Foursquare, and

Gowalla, respectively. (based on ([82]))

Figures 2.3 and 2.4 present the probability of a social tie between two users w.r.t.

their geographical distance on three typical LBSN datasets. It shows that users with short

geographical distance are more likely to become friends than users with long geographical

distance, and friends usually have short geographical distance than non-friends [3, 82].

2.3.2 LARGE-SCALE AND SPARSE DATA

In traditional cellphone-based GPS data, users’ geographical movements are automatically

tracked and recorded by the service provider according to a pre-defined time interval (usu-

ally within 10 minutes). The increasing use of mobile devices has led to the availability of

big mobile data. Thus, one can easily obtain a long trajectory with massive GPS points

from a single user. However, studies on such data are still limited to the small number of

participant users [21, 117].

In contrast, location-based social networks adopt a user-driven check-in strategy [72],

i.e., the user decides whether or not to check-in at a specific place based on his own choices.

For example, a user may check-in at a museum after his last check-in at a restaurant two

days earlier. Hence, check-in data on LBSNs can also be sparse, which greatly increases

the difficulty of mining human mobility. LBSN data is also big. Different from the limited

participated users in traditional GPS data, location-based social networking services take

advantage of the social media platform, generating a large number of geographical check-

ins from millions of users [11, 82]. For example, Foursquare reached 55 million users and
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Figure 2.4: Probability of friendship between two users as a function of their geographic

distance for the three datasets. (based on ([82]))
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over 6 billion check-ins by November, 20141. Yelp announced a monthly average of 132

million unique visitors in Q1 2014, and more than 57 million reviews by the end of Q1

20142. Figure 2.5 presents the user distributions on LBSNs w.r.t. the world and the USA,

respectively.

2.3.3 SEMANTIC INDICATION

Location-based social networking services provide semantic indications on check-in location-

s. Traditional cellphone data stores GPS trajectories in terms of longitude and latitude, and

there is generally no mapping between a GPS position to a specific location (i.e., a POI).

For example, it is not easy to figure out whether a GPS point corresponds to a restaurant, a

theater, or just a point on highway. Although there are location databases available aimed

at generating such correlations, there are still unsolved problems. First, some locations may

share the same (or close) GPS positions, such as two adjacent POIs on the same street,

or two businesses share the same location and one is upstairs of the other. Second, even if

the GPS position can be accurately mapped to a POI, it is still unsure whether the user

has really visited that location. The observation of a user staying at a GPS position close

to a book store for ten minutes does not necessarily indicate that the user has visited that

store.

Data generated on LBSNs is user-driven. The above problems are naturally addressed.

A location is associated with a user’s check-in only if the user specifies it through LBSN

services, thus solving the uncertainty of the check-in locations as with traditional cellphone

data. When a user plans to check-in, LBSN services provide him with nearby POIs according

to the user’s current position. The user selects the correct one and performs a check-in action

by clicking the “check in” button for the location. Each location in LBSN is associated with

textual descriptions such as tags, categories, names, as shown in Figure 2.2. Furthermore,

the user can provide additional content of the location in terms of tips, comments. Figure 2.6

plots the check-in distribution over different geographical feature types such as restaurants

and bars. Figure 2.7 presents the semantic information from worldwide check-ins on a

word cloud generated using tags. Such semantic information helps understand LBSN users’

mobile preferences [54, 55].

2.4 MOBILITY PATTERNS

Mobility patterns can be discovered from LBSN data. In this section, we discuss some

representative mobility patterns regarding their properties, which will be further used for

mining human mobility in Chapters 3 and 4.

1https://foursquare.com/about
2http://www.yelp-press.com/phoenix.zhtml?c=250809&p=irol-press
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(a) The user distribution over the world.

(b) The user distribution over the USA.

Figure 2.5: The user distribution on Foursquare (based on ([30]))
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Figure 2.6: Check-in frequency distribution for selected geographic feature types such as

restaurants and bars (based on ([101]))

Figure 2.7: Semantic information from worldwide check-ins (based on ([16]))
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Figure 2.8: Looking at the people living in low, medium and high density regions separately, we

see that if one lives in a high density region (a city), he is less likely to know nearby individuals,

since there are so many of them. (based on ([3]))

2.4.1 INVERSE DISTANCE RULE

The idea of “Death of Distance” proposed in 2011 claims that geographical distance plays a

less important role due to the communication revolution and the rapid development of the

Internet, making our world a “global village” [9]. Studies on spatial structures of networks

demonstrate that there is a strong correlation between geographical attributes and network

properties, and suggest the significance of considering the spatial properties in network

analysis [32]. Various studies argue that the IT revolution does not turn us into a borderless

society, as physical proximity still plays an important role in the Internet era [33, 69].

One of the first attempts to investigate how social connection is affected by geographical

distance in online social networks was conducted on LiveJournal [58]. Analysis on users’

social networks and their hometown information shows that only one-third of friendships

are independent of geography. In addition, studies on the first commercial LBSN service in

the U.S., Dodgeball, indicate that locations do change people’s online experience [44].

The increasing use of location-based social networking services generates large-scale

data with geographical distance between users and their social networks. The study on geo-

social metrics [80] reports that 1) users who live close to each other have a higher probability

of creating friendship links than those who are distanced; and 2) users in the same social

cluster show short geographical distances. Furthermore, by comparing location-based social

networks (Brightkite and Foursquare) with content-based social networks (LiveJournal and

Twitter), it is shown that people within a social cluster on LBSNs tend to have smaller

geographical distance than online social networks that focus on content producing and

sharing.
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Figure 2.9: Lévy Flight of check-in data for consecutive check-ins (based on ([16]))

Researchers also investigated how geographical distance influences social network-

s, and how social networks influence human movement on LBSNs. One study on three

location-based social networking sites (Brightkite, Foursquare, and Gowalla) [82] discovers

strong heterogeneity across users at different geographic scales of interactions across social

ties. The probability of a social tie between two users is roughly a function of the geograph-

ical distance between them. The study on LBSN data and cell phone data [17] reports that

long-distance travel is more influenced by social friendship while short-range human move-

ment is not influenced by social networks. The investigation [48] on Twitter social networks

concludes that offline geography still matters in online social networks, while one third of

the users would like to have their social links in other countries, which is consistent with

the previous findings in [58, 80]. Figures 2.4 and 2.8 present such relationships.

2.4.2 LÉVY FLIGHT OF CHECK-INS

“Lévy Flight” property indicates that people tend to visit nearby places and occasionally

distant places. The study on millions of check-ins on Facebook [75] discovers that “Lévy

Flight” does exist on LBSNs. Similarly on Foursquare, around 20% of consecutive check-

ins in Foursquare happen within 1 km of one another, 60% between 1 and 10 km, and

20% over 10 km [72]. Figure 2.9 plots the Lévy Flight of check-in data for the distance

between two continuous check-ins, while Figure 2.10 presents a similar plot for the distance

between a user’s check-in location to his home. In reality, such a property can be used to

predict a user’s location or recommend locations to him. For example, by investigating the

“Lévy Flight” patterns of a user’s check-in history, one can generate a short list of location

candidates for recommendation based on the user’s current position.
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Figure 2.10: Lévy Flight of check-in data between a user’s check-in location to his home (based

on ([17]))

2.4.3 POWER-LAW DISTRIBUTION AND SHORT-TERM EFFECT

The “Lévy Flight” property describes mobility patterns between two check-ins. One can

organize a set of check-ins according to their time stamps, and generate a historical check-

in sequence. We discuss two properties observed from such check-in sequences on LBSNs.

First, a user’s check-in sequence follows power-law distribution, i.e., a user goes to a few

places many times and to many places a few times. Figure 2.11(a) shows the distribution of

check-in frequency on a LBSN data. Note that both x-axis and y-axis are in the log scale.

The figure suggests that the check-in sequence follows a power-law distribution

N(x) ≈ a× xb, (2.1)

where x is the check-in frequency, N(x) is the number of locations with check-in frequency

as x, and b is the exponent which is approximately 1.42.

The check-in distribution of an individual also shows power-law property, as shown

in Figure 2.11(b). Second, the check-in actions in a sequence have a short-term effect. For

example, considering that a user arrives at the airport and then takes a shuttle to the

hotel, has his dinner and sips a cup of coffee. The effects of the previous check-ins at

airport, shuttle stop, hotel and restaurant have different correlation strength to the latest

check-in of drinking coffee. Such effect decreases as the time goes on.
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The similar structures shared by location trajectories and word sequences are shown in

Table 2.2. For example, a document in language processing can correspond to an individual

check-in sequence in LBSNs, while a word in the sentence corresponds to a check-in location.

Thus, the power-law distribution and short term effect are shared by LBSNs and natural

language processing, where the word distribution is closely approximated by the power-

law [120]; and the current word is more relevant to its adjacent words than distant ones.

The language model that works with word sequences is potentially applicable to location

trajectories on LBSNs due to these common features. For example, the unigram language

model that ignores the relationship between the current word to its nearest neighbors can

be applied to LBSNs while considering the current check-in and ignoring its nearby check-

ins, and so can the n-gram language model. In Chapter 3, we introduce how to predict

a visited location by exploring these two properties with methods derived from language

models.
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Figure 2.11: The power-law distribution of check-ins (based on ([27]))

2.4.4 TEMPORAL PERIODIC PATTERNS

Human mobility exhibits significant temporal periodic patterns on LBSNs, which are cor-

related to the location property, such as daily patterns (hours of the day), weekly patterns
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Table 2.2: Common properties of language processing and LBSNs mining ([27])
Language processing LBSNs mining

Corpus Check-in collection

Document Individual check-ins

Paragraph Monthly check-in sequence

Document Sentence Check-in Weekly check-in sequence

Structure Phrase Structure Daily check-in sequence

Word Check-in location

Figure 2.12: Temporal distribution of check-in data in the world (daily patterns) (based on

([16]))

(days of the week), weekday/weekend patterns [16, 52, 66, 72, 101]. For example, a user

may regularly arrive to the office around 9:00 am, go to a restaurant for lunch at 12:00 pm,

and watch movies at night around 10:00 pm. Therefore, investigating the features embed-

ded in daily patterns allows us to better understand human mobility, providing a potential

opportunity to design more advanced location-based services on LBSNs.

Figures 2.12 and 2.13 present the users’ daily check-in behavior in the world and in

three cities. Figure 2.14 presents the weekly check-in behavior globally. These plots indicate

that there are certain time periods when users would like to visit locations, considered as

“peak”, and certain time periods when users rarely visit locations, considered as “bottom”.

As these patterns are about human mobility in temporal aspects, we will discuss in detail

in later sections.

2.4.5 MULTI-CENTER CHECK-IN DISTRIBUTION

Multi-center check-in distribution has been observed from large-scale LBSN data. The

“center” could be a geographical area, or a specific time period. From a spatial aspect, a

user’s movement generally centers on certain location areas, and rarely checks-in at locations

far away from the center. Furthermore, the check-in probability follows the inverse distance
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Figure 2.13: Temporal distribution of check-in data in three cities (daily patterns) (based on

([16]))

Figure 2.14: Temporal distribution of check-in data in the world (weekly patterns) (based on

([16]))
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Figure 2.15: Check-ins of a user in San Francisco: Geographic distribution of check-ins when

at home or work. (based on ([17]))

rule (i.e., Lévy Flight). Figures 2.15 and 2.16 plot a user’s check-in history centered at two

points “home” and “work”.

From a temporal aspect, a user tends to visit a location at certain time periods, such

as visit a restaurant between 11:00am to 1:00pm, and 5:00pm to 7:00pm, and rarely visit

the location at other time periods. Figures 2.17 and 2.18 plot a user’s daily and weekly

check-in distribution at a location l from a LBSN dataset. Each point represents the total

number of check-ins at a specific hour of the day (day of the week) at location l by that

user, respectively. It can be observed that the check-in probability is centering on certain

time periods and decreasing during other time periods.
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Figure 2.16: Check-in locations generated by home/work states. (based on ([17]))
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Figure 2.17: Daily check-in distribution of a user at location l (based on ([26]))
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Figure 2.18: Weekly check-in distribution of a user at location l (based on ([26]))
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C H A P T E R 3

Returning to Visited Locations

All of us return to previously visited locations, e.g., offices, homes, restaurants, shopping

stores, or nearby movie theaters. Capturing such behavior corresponds to a computational

task called location prediction. Location Prediction is a traditional task in mobile computing

of discovering users’ repetitive mobility patterns. Observing a user’s visiting history can

help discover the user’s interests in different visited locations. Predicting which location

the user would most likely visit again could promote mobile marketing and facilitate users’

daily life, such as distributing relevant restaurant coupons to a user based on the prediction.

Location prediction on LBSNs refers to two different prediction targets: 1) predicting

a user’s next visiting location, and 2) predicting a user’s home location. Due to the user-

driven check-in property, a user tends to check-in at certain “exciting” locations, but rarely

check-in at his home location, not only because the latter is less “exciting”, but also because

of certain privacy concerns. Thus, the prediction of a user’s next visiting location focuses

on those “exciting” locations visited by the user, which relies on discovering of the mobility

patterns through a user’s visiting history from spatial, temporal, and social aspects. On the

other hand, the prediction of a user’s home location usually relies on content information

and network information, as few visiting records of home location can be observed from a

user’s visiting history. In this chapter, we introduce definitions and present representative

location prediction approaches in each category.

3.1 NEXT LOCATION PREDICTION

Next location prediction is to predict a user’s next visiting location based on the user’s

check-in history on LBSNs. Next location prediction algorithms are discussed in terms of

four types: sequential patterns , temporal dynamics , social correlations , and hybrid patterns .

3.1.1 SEQUENTIAL PATTERNS

Sequential patterns suggests that a user follows some sequential behaviors when visiting

locations. Considering a user’s check-in history as a sequence of locations. Prediction is

made based on the count of each location appeared in the sequence, and its relationship to

nearby locations. Prediction algorithms with sequential patterns usually consider two fac-

tors, check-in history and check-in context . The check-in history refers to a user’s historical

check-ins during a certain period, e.g., last year. It is used to discover sequential patterns of

the user. The check-in context is a check-in sequence extracted from the user’s latest check-
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in locations. According to how many latest check-ins are considered as context, methods in

this area can be classified as Most Frequented Check-in, Order-k Markov , Fallback Markov ,

and Combined Models. Note that the check-in history may cover the check-in context if the

former contains a user’s latest check-ins. For ease of illustration, we consider them as two

independent factors in this chapter.

Most Frequented Check-in Model

The Most Frequented Check-in (MFC) model is mostly applied when there is no observed

check-in context but only the observed check-in history . It assigns the probability of next

check-in cn at location l as the probability of l appearing in the check-in history, the

underlying hypothesis being that a user tends to visit his favorite locations.

PMFC(cn = l|Hu) =
|{ci p ciǫHu, ci = l}|

|Hu|
, (3.1)

where Hu = {c1, c2, ..., cN} is the set of historical check-in locations of user u.

Example 3.1 Given a user’s check-in history for one week as shown in Table 3.1, as-

sume the user is going to check-in at a location now, predict this location using the Most

Frequented Check-in model.

According to the time stamps, the check-in locations can be chronologically organized

as the following location sequence:

Hu = {l1, l2, l3, l2, l3, l4, l5, l1, l3, l2, l6, l2, l3, l2, l3, l2, l6, l2, l5, l3}.
With MFC, we find the most frequently visited location in Hu as shown in Table 3.2,

which presents the statistical information of each location in Hu.

E.q. (3.1) shows how to estimate the check-in probability. For example, the probability

of the next check-in happening at l1 is 2/20 = 0.10, where 20 is the total number of check-ins

in the user’s check-in history. From Table 3.2, we see that l2 is visited most. Thus, MFC

predicts the next visiting location as l2.

Order-k Markov Model

The Order-k Markov (OM-k) model [85] is an approach to mine associated patterns from

sequential data. It is mostly applied when both check-in context and check-in history are

observable. The OM-k considers the latest k visited locations as check-in context Cu, and
searches for frequent patterns in the check-in history Hu to predict the next location. The

probability of a location l being visited is defined by the Order-k Markov model as:

POM−k(cn = l|Hu, Cu)
=
|{ci p ciǫHu, ci = l, ci−j = cn−j}|
|{ci p ciǫHu, ci−j = cn−j}|

, 0 < j ≤ k, j ∈ Z. (3.2)
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Table 3.1: An example of check-in history from an individual user.

ID Time Location

1 10:25 am, Sun, Mar 16, 2014 l1
2 11:12 am, Sun, Mar 16, 2014 l2
3 01:30 pm, Sun, Mar 16, 2014 l3
4 20:16 pm, Sun, Mar 16, 2014 l2
5 22:50 pm, Sun, Mar 16, 2014 l3
6 10:30 am, Mon, Mar 17, 2014 l4
7 11:26 am, Tue, Mar 18, 2014 l5
8 11:56 am, Tue, Mar 18, 2014 l1
9 01:30 pm, Tue, Mar 18, 2014 l3
10 11:02 am, Wed, Mar 19, 2014 l2
11 11:55 am, Wed, Mar 19, 2014 l6
12 11:08 am, Thu, Mar 20, 2014 l2
13 01:30 pm, Thu, Mar 20, 2014 l3
14 11:21 am, Fri, Mar 21, 2014 l2
15 11:20 pm, Fri, Mar 21, 2014 l3
16 00:30 am, Sat, Mar 22, 2014 l2
17 11:52 am, Sat, Mar 22, 2014 l6
18 01:30 pm, Sat, Mar 22, 2014 l2
19 07:22 pm, Sat, Mar 22, 2014 l5
20 11:30 pm, Sat, Mar 22, 2014 l3

Table 3.2: Predicting the next location with the Most Frequent Check-in model.

Location l1 l2 l3 l4 l5 l6
No. of Visits 2 7 6 1 2 2

Check-in Probability 0.10 0.35 0.30 0.05 0.10 0.10

where Cu = {cn−k, ..., cn−2, cn−1} is the check-in context consisting of the latest k check-ins

of user u.

Example 3.2 Given a user’s check-in history in Table 3.2. Assume that his latest check-

ins are l1 → l3 → l2 (not listed in Table 3.2), predict his next visiting location with Order-k

Markov model.

An Order-k Markov model considers the latest k check-ins as check-in context. First,

we need to determine k. If k = 1, we use the latest check-in as check-in context, i.e., l2, and

search for sequential patterns starting with this context, i.e., l2 → x, where x is a check-in
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location happened after the context. If k = 2, we consider the last two check-ins as context,

i.e., l3 → l2, and search for sequential patterns starting with these two check-in locations,

i.e., l3 → l2 → x. Table 3.2 presents the statistical information of each order in Hu.

Table 3.3: Predicting the next location with the Order-k Markov model.

Location k=1 k=2

Sequences l2 → l3 l2 → l6 l2 → l5 l3 → l2 → l3 l3 → l2 → l6
No. of Visits 4 2 1 2 1

Check-in Probability 0.57 0.29 0.14 0.67 0.33

The check-in probability is computed as in E.q. (3.2). For example, the probability of

visiting l3 after visiting l2 is 4/7 = 0.57, where 7 is the total number of length 2 patterns

starting with l2. When k = 1, according to Table 3.3, we see that after visiting l2, there

is 57% probability for the user to visit l3, 29% probability to visit l6, and 14% probability

to visit l5. Thus, the predicted next visiting location is l3 with the Order-1 Markov model.

Similarly, the most likely visited location after consequently visiting l3 and l2 is l3 (67%).

Thus, the predicted next visiting location is also l3 with the Order-2 Markov model.

Fallback Markov Model

The MFC Model is actually an Order-0 Markov Model without considering any latest

check-in locations as context. One problem of the Order-k (k ≥ 1) Markov model is that

it relies on the observable context. Thus, if the context is not in the check-in history, the

model would fail immediately. For example, if the check-in context is Cu = {l1, l7, l2} and
the Order-2 Markov model is chosen, according to the check-in history Hu in Example. 3.1,

it is the first time this user checks-in at l7, while no sequential patterns for the order-2

pattern l7 → l2 → x can be extracted from Hu. Therefore, the Order-2 Markov Model is

not applicable to predict the next location. Actually, any pattern with k larger than 2 in

this example would fail, and only the Order-1 Markov model or MFC model could work.

The Fallback Markov (FM) model is then proposed.

In the Fallback Markov model, a bigger k is first selected, say, k = 3. Considering

the check-in context Cu = {l1, l7, l2}, the sequential patterns regarding k = 3 are searched

from the check-in history, which corresponds to l1 → l7 → l2 → x pattern in H, where x
represents any location satisfying that pattern. Since there is no such pattern in H, the
model falls back to the Order-2 Markov model (k = 2), and search for order-2 patterns

l7 → l2 → x. This process goes on until an order-k pattern is found. In an extreme case

when k = 0, the MFC model is adopted and the most frequently visited location in H is

considered for prediction. The reason to start from a big k is because that bigger k indicates

longer patterns, and the probability of a long pattern being repeated is relatively smaller
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than a short pattern; thus, a long pattern generally provides strong indications on mobility

patterns, while the fallback model tends to consider strong indications first.

Combined Markov Model

The above Markov models (i.e., OM and FM) need to specify a parameter k, which considers

only one context at a time. However, the choice of k commonly requires human knowledge,

and different order-k patterns may contain complementary information for prediction. Thus,

combined models are developed to address this issue. In a combined model, there is no need

to specify a k for the Markov model. It considers order-k sequential patterns with different

k, and combines them together with smoothing which assigns weights on each pattern. The

following example illustrates the basic idea of Combined Markov (CM) model.

Example 3.3 Given a user’s check-in history in Example 3.1, and his latest check-in context

Cu = {l1 → l3 → l2}, predict his next visiting location with the Combined Markov model.

Table 3.4 lists the probability of next visiting location based on the current context

with different k. For example, the probability of visiting l3 with latest check-in context as

{l3 → l2} is 0.67, while the probability of visiting l4 with latest check-in context as {l1 →
l3 → l2} is 0.

Table 3.4: Probability of the next location with different contexts.

Probability of Next Visiting Location

Context l1 l2 l3 l4 l5 l6
k=0 N/A 0.10 0.35 0.30 0.05 0.10 0.10

k=1 l2 0 0 0.57 0 0.14 0.29

k=2 l3 → l2 0 0 0.67 0 0 0.33

k=3 l1 → l3 → l2 0 0 0 0 0 1

Assume the weight of each order-k pattern is given in Table 3.5, and the final proba-

bility of visiting a location is a weighted combination on these order-k patterns:

P (l) =
∑

k

Pk(l) ∗ wk (3.3)

where Pk(l) is the probability of location l with order-k context, and wk is the weight of

corresponding order-k context. For example, the combinational probability of visiting l3 is

P (l3) = 0.30 ∗ 0.40 + 0.57 ∗ 0.30 + 0.67 ∗ 0.10 + 0 ∗ 0.20 = 0.3580 (3.4)

and the combinational probability of visiting l6 is

P (l6) = 0.10 ∗ 0.40 + 0.29 ∗ 0.30 + 0.33 ∗ 0.10 + 1 ∗ 0.20 = 0.3600 (3.5)
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A similar procedure can be applied to calculate the probability of other locations. The final

prediction of the next visiting location in this example is l6.

Table 3.5: Predicting the next location with the Combinational Markov model.

Location k = 0 k = 1 k = 2 k = 3

Context N/A l2 l3 → l2 l1 → l3 → l2
Weight 0.40 0.30 0.10 0.20

In this example, weights are pre-defined for ease of presentation. In practice, the

weight of each order-k context is commonly learned from the check-in history by mathemat-

ical models. These models originate from n-gram language modeling, such as the Interpo-

lated Kneser-Ney or hierarchical Pitman-Yor language model. Since it has been discovered

that word sequence and location sequence share a set of common properties, i.e., power-law

distribution and short-term effect [27] discussed in Section 2.4.3, these language models

work well when applied to location sequence for location prediction. The learning process

with these methods is beyond the scope of this book. For detailed information readers can

refer to [92].

3.1.2 TEMPORAL DYNAMICS

The sequential patterns discussed above are generally for next location prediction if we do

have information of a user’s next visiting time. If such information is available, temporal

patterns can be used. Temporal periodic patterns from a user’s repetitive check-in behavior

can be useful in next location prediction.

Most Frequented Time Model

Human geographical movement exhibits strong temporal patterns and is highly relevant to

the location property [16, 66, 101]. As discussed in Section 2.4.4, people can have repetitive

check-ins in daily activities such as regularly going to a restaurant for lunch around 12:00

pm, watching movies on Friday night, and shopping during weekends. Various temporal

periodical patterns, such as daily pattern (hour of the day) and weekly pattern (day of

the week), can be discovered through this kind of check-in behavior. We first introduce an

intuitive model, the Most Frequented Time (MFT) model.

We start from hours of the day patterns to illustrate the MFT model. Let hi denote

the hourly information of the check-in ci, where hi ∈ {0, 1, ..., 23} indicating one of the

24 hours. For example, the third check-in with time “1:30 pm, Sunday, Mar 16, 2014” in

Table 3.1 corresponds to h = 13.Hu is the observed historical check-ins of user u. The MFT

model assigns the probability of the check-in cn at location l at time hn as the probability
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of location l occurring at hour hn in the previous check-in history,

PMFT (cn = l|hn,Hu) =
|{ci p ci ∈ Hu, ci = l, hi = hn}|
|{ci p ci ∈ Hu, hi = hn}|

, (3.6)

Example 3.4 Given a user’s check-in history in Table 3.1, assume that the user is going

to check-in at a location tomorrow around 11:30 am; predict that location with the Most

Frequented Time model.

The time information “11:30 am” corresponds to h = 11. In Table 3.1, there are 8

check-ins that happen at h = 11, whose check-in IDs are 2, 4, 8, 11, 12, 14, 17, and 19.

The corresponding check-in locations are {l2, l2, l1, l6, l2, l2, l6, l5}. Table 3.2 presents the

probability of each location being visited at the given time.

Table 3.6: Predicting the next location with the MFT model (daily patterns).

Location l1 l2 l3 l4 l5 l6
No. of Visits 1 4 0 0 1 2

Check-in Probability 0.125 0.50 0 0 0.125 0.25

The check-in count is computed as in E.q. (3.6). For example, the probability of vis-

iting l6 is 2/8 = 0.25, where 8 is the total number of check-ins made by the user at h = 11

in Table 3.1. According to Table 3.6, there is 50% probability for the user to visit l2 at

11 : 30am, which is higher than the probabilities of all the other location candidates. Thus,

the predicted location is l2 based on the MFT model with the consideration of hour of the

day patterns.

Similarly, for weekly patterns, we introduce d ∈ {1, 2, 3, 4, 5, 6, 7} indicating one of

the 7 days (i.e., Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday) in a

week. The probability of a check-in at location l on day d is the probability of the location l

visited on day d in the previous check-in history. For example, assume we want to predict the

user’s next check-in location on Saturday. According to Table 3.1, the probability of each

location being visited on Saturday is shown in Table 3.7. We see that l2 is the predicted

Table 3.7: Predicting the next location with the MFT Model (weekly patterns).

Location l1 l2 l3 l4 l5 l6
No. of Visits 0 2 1 0 1 1

Check-in Probability 0 0.40 0.20 0 0.20 0.20

location since it has the greatest probability of being visited on Saturday.
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Improved MFT Model

In the MFT model, temporal information is discrete. The prediction of check-in location

at a specific time relies on the observation of historical check-ins at that time. However,

we may not have check-in data of a particular time. For example, if we want to predict

the user’s next check-in location at 6:00 am, we see no historical check-in in Table 3.1.

Furthermore, even if there are check-ins at the given time, it would be arbitrary to consider

only locations visited at this time as candidates. For example, if we want to predict the

user’s next check-in location at 10:30am, although the user has check-in at l1 and l4 around

10 : 30am before, these two locations may not be the only prediction candidates. According

to the check-in time of other locations, l2 has been mostly visited around 11:00 am. Since

human movement is a stochastic process, the probability of l2 being visited at 10:30 am

should not be arbitrarily 0. Smoothing techniques are needed in order to infer the probability

of a location being visited at an unobserved time.

One typical way of smoothing discrete values is to consider the values as follow-

ing certain distributions. To smooth the temporal periodic patterns at different discrete

time points, various distributions can be applied; As introduced in Section 2.4.5, Gaussian

distribution has been observed in human mobility and proven efficient and effective for

capturing temporal patterns. Gaussian distribution, also referred to as normal distribution,

is a continuous probability distribution. Its probability function contains two parameters,

i.e., mean µ and variance σ, as shown below:

f(x, µ, σ) =
1√
2πσ2

e−
(x− µ)2

2σ2
(3.7)

Figure 3.1 presents a typical normal distribution. Normal distribution has a set of

properties suitable to model temporal periodic patterns:

• Probability distribution centers on a specific time point, corresponding to the mean.

• Probability decreases as the distance to the center point increases and the decreasing

rate is related to the variance.

Human behavior exhibits similar properties regarding temporal patterns. A user visits

a location during certain time period(s) (e.g., visiting a bar at night), and rarely visits that

location during other time period(s) (e.g., visiting a restaurant at 3:30pm). Figure 3.2

presents a user’s check-in distribution on a specific location over 24 hours of the day from

a real-world mobility dataset.

It is observed that the user does not have checked-in at this location at 5:00 am.

Assume we want to predict the user’s check-in probability on this location at 5:00 am; the

MFT model would return 0. With the improved MFT model, the check-ins in Figure 3.2

are modeled as a normal distribution over time. To predict the user’s next visiting location

at hour h, we follow the prediction procedure:
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Figure 3.1: An example of Gaussian distributions with different means and variances (based

on ([87])).
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Figure 3.2: An example of a distribution from real-world mobility dataset ([29]).

1. For each location l visited by the user in the observed check-in history, generate its

check-in count over 24 hours of the day.

2. Adapt normal distribution to model the check-in count in Step 1, compute the corre-

sponding mean µl and variance σl.

3. Based on the µl and σl obtained in step 2, use Eq. (3.7) to compute the visiting

probability P (h|µl, σl) with the given time h as input x, which is the probability of

check-in at h for location l, i.e., P (h|l).



42 3. RETURNING TO VISITED LOCATIONS

4. Repeat Step 1 to Step 3 to compute the probability P (h|µl, σl) for all the ls. Rank

the probability in descending order and select the top P (h|µl, σl); output the corre-

sponding l as prediction.

We use the check-ins in Figure 3.2 as an example to illustrate how it works. Let

Hu = {c1, c2, ..., cN} be the set of historical check-in locations of user u, where N is the

total number of check-ins Hu. Let ci be the i-th check-in and hi be the hour information

of ci, where hi ∈ {0, 1, 2, ..., 23}.
Step 1. Generate the corresponding check-in count of l from u in Hu over 24 hours,

as shown in Table 3.8.

Table 3.8: Check-in count in Hu over 24 hours.

Hour of the Day 0 1 2 3 4 5 6 7

Count 2 3 3 2 0 0 0 1

Hour of the Day 8 9 10 11 12 13 14 15

Count 1 2 10 15 4 5 6 20

Hour of the Day 16 17 18 19 20 21 22 23

Count 43 65 11 4 4 3 1 0

Step 2. Adopt normal distribution to fit the check-in count. Consider that each check-

in action ci on l at a specific hour hi follows the normal distribution over time as Eq. (3.7),

p(hi|ci = l,Hu) ∼ N (hi|µl, σ
2
l ), (3.8)

where µl and σ
2
l are the mean and variance of Gaussian distribution. Assuming the check-

ins are i.i.d (independent and identically distributed), the joint probability of the training

data set, given µl and σl, is in this form:

N∏

i=1

p(hi|ci = l) (3.9)

=

N∏

i=1

N (hi|µl, σ
2
l )

=

N∏

i=1

1

(2πσ2
l )

1/2
exp{− 1

2σ2
l

(hi − µl)
2}.
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By maximizing the log likelihood above, we obtain µl and σ
2
l ,

µl =
1

N

N∑

i=1

hi

σ2
l =

1

N

N∑

i=1

(hi − µl)
2. (3.10)

According to Figure 3.2,

N = 2 + 3 + 3 + 2 + 1 + 1 + 2 + 10 + 15 + 4 + 5

+ 6 + 20 + 43 + 65 + 11 + 4 + 4 + 3 + 1

= 205
N∑

i=1

hi =

N0∑

i=1

hi +

N1∑

i=1

hi + ...+

Nt∑

i=1

hi + ...+

N23∑

i=1

hi

= 0 ∗ 2 + 1 ∗ 3 + 2 ∗ 3 + 3 ∗ 2 + 7 ∗ 1 + 8 ∗ 1 + 9 ∗ 2 + 10 ∗ 10
+ 11 ∗ 15 + 12 ∗ 4 + 13 ∗ 5 + 14 ∗ 6 + 15 ∗ 20 + 16 ∗ 43
+ 17 ∗ 65 + 18 ∗ 11 + 19 ∗ 4 + 20 ∗ 4 + 21 ∗ 3 + 22 ∗ 1

= 3042 (3.11)

where Nt is the number of check-in occurrences at t.

Thus,

µl = 3042/205 = 14.8390 (3.12)

(3.13)

Similarly,

σ2
l = 16.0375 (3.14)

(3.15)

Step 3. With µl and σl obtained in Step 2, compute the visiting probability at h = 5

for location l.

P (h = 5|l) = P (h = 5|µl, σl) =
1√

2π ∗ 16.0375
e−

(5− 14.8390)2

2 ∗ 16.0375 = 0.0049 (3.16)

Figure 3.3 plots the estimated Gaussian distribution based on Figure 3.2. The plot

shows that the distribution captures the major trend of the user’s periodic mobility patterns.

Step 4. Return l corresponding to the top ranked P (h|l) as prediction.
For each location l visited by this user, repeat Steps 1 to 3 to compute its µl and σl,

and calculate its corresponding P (h|µl, σl) at the given hour h, indicating the probability
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Figure 3.3: Smoothed Gaussian distribution with the Improved MFT model ([29]).

of this check-in happening at the specified h for location l. By ranking all the P (h|µl, σl),

we predict the location that has the highest probability of being visited at h.

Note that the above example is to give an illustration of the improved MFT model.

In practice, the model is not limited to hourly patterns or normal distribution,

• By generating the check-in count according to different temporal periodic patterns in

Step 1, e.g., daily or weekly patterns, the improvedMFTmodel could make predictions

in a similar fashion.

• The normal distribution can be replaced with other distributions that fit the user’s

check-in behavior. For example, there is work proposing the adoption of Gaussian

Mixture model to model the check-in count.

P (hi|ci = l, Hu) ∼
2∑

k=1

AkN (hi|µk
u,l, σ

k
u,l)

s.t.

2∑

k=1

Ak = 1, 0 ≤ Ak ≤ 1 (3.17)

The hypothesis is that a user would like to go to the same place in two specific time

periods during a day, such as visiting a restaurant for lunch and dinner, going home

or working places, and so on. The check-in curve in Figure 3.2 also presents such

patterns (i.e., two peaks around h = 11 and h = 17) which support this idea.
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Table 3.9: Numbers of check-ins shared between two users
Average No. of Common Check-ins

Friends 11.8306

Non friends 4.3226

3.1.3 SOCIAL CORRELATIONS

The previous section investigates the spatio-temporal patterns for location prediction, with-

out considering the social network information. Since LBSNs provide abundant information

of both a user’s spatial-temporal movements and his social networks, this section studies

the role of social networks and shows how to use them in location prediction.

Social correlations [2] suggest that a user’s mobile behavior is usually correlated to

his social context, such as watching movies with friends or going out with colleagues. Gao et

al. [27] compared the number of common check-ins between two users with friendships and

those without friendships on a real world LBSN dataset, as shown in Table 3.9. On average,

users without friendships share approximately 4.32 check-ins, while users with friendships

share approximately 11.83 check-ins, which is almost 3 times the former.

To verify the effect of social correlations in human mobility on LBSNs, i.e, whether

people with friendships go to similar places than those without, many methods can be

used. Here, we introduce a hypothesis testing approach. For each user, let f ∈ R
m be his

check-in vector with each element f (k) being the number of check-ins at location lk ∈ L,
where m = |L| is the location vocabulary size. Let the similarity between ui and a group

G of other users be the average similarity between user uj and the users in group G,

SG(ui) =

∑
uj∈G sim(ui, uj)

|G| . (3.18)

where sim(ui, uj) denotes the similarity between ui and uj, which will be discussed later.

For each ui, we calculate two similarity measures, i.e., SF (ui) is the average similarity of

ui and his friendship network; SR(ui) is the average similarity of ui and randomly chosen

users, who are not in the friendship network of ui. The number of randomly chosen users

is the same as that of ui’s friends.

A two-sample t-test is conducted on the vectors SF and SR. The null hypothesis is

H0: SF ≤ SR, i.e., users with friendships share less common check-ins than those without,

and the alternative hypothesis isH1: SF > SR. It is reported in [27] that the null hypothesis

is rejected at significant level α = 0.001 with p-value of 2.6e-6, suggesting that users with

friendships have higher check-in similarity than those without.

Though several studies investigated the social correlations for next location predic-

tion, its prediction ability has not been fully exploited. Compared to spatial and temporal

information, social information is less effective in predicting a user’s repetitive mobile be-

havior, as generally a user’s repetitive mobile behavior is more affected by his personal
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interests than his friends’ preferences. Thus, social correlation is commonly adopted as a

component to assist spatial and temporal information for next location prediction. Gen-

erally, social correlation based prediction approaches investigate a user’s friends’ check-in

history to infer the user’s check-in interests to make prediction. Based on whether to con-

sider a friend’s check-in actions as i.i.d., approaches can be classified into two categories:

the independent and the sequential social mobility models.

Figure 3.4: Location prediction with social-historical ties ([27]).

Independent Social Mobility Model

The Independent Social Mobility model [17] considers that each check-in from friends has

an independent effect on the user’s current check-in location, and models the probability

of a user u’s next check-in cn on location l as a function of the geographical and temporal

distance between l and each of u’s friends’ check-in locations.

P (cn = l|tn = t,HF (u)) =
∑

(ti,li)∈HF (u)

|ti − t|−α · |li − l|−β (3.19)

where F (u) is the set of u’s friends. HF (u) is the set of historical check-ins from F (u). ti
and li are the time and location of the check-in ci ∈ HF (u). α and β are two parameters to

capture the power-law property of the geographical and temporal effects.

In reality, α and β are set as empirical values, or learned from the check-in history

with maximum likelihood methods.
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Sequential Social Mobility Model

Different from the Independent Social Mobility model, the Sequential Social Mobility model

considers that check-ins from the user’s friends are correlated and their sequential patterns

could affect the user’s current check-in. For each friend, it considers the friend’s check-

in history HF (u) as the user’s check-in history, then based on the user’s current check-in

context Cu (i.e., recently visited locations), applies methods based on sequential patterns

or temporal dynamics discussed above to make a prediction. Thus, for each friend, the

system makes a prediction. In the end, the final prediction is made through the weighted

combination on all the predictions from friends, where the weight is commonly estimated

with user similarity.

Let P (cn = l|HF (u), Cu) be the check-in probability calculated based on u’s social

friends, defined as

P (cn = l|HF (u), Cu) =
∑

uj∈F (u)

sim(u, uj)P (cn = l|Huj
, Cu). (3.20)

P (cn = l|Huj
, Cu) can be computed using Order-k Markov, Fallback Markov, and Combined

Markov models.

Measuring User Similarity

User similarity on LBSNs is computed through the user’s check-in history. We introduce

three typical similarity measures:

• Jaccard Index (JI)

The Jaccard Index, or the Jaccard similarity coefficient, is defined as the size of the

intersection divided by the size of the union of the sample sets:

simJI(ui, uj) =
|Ci

⋂
Cj|

|Ci

⋃
Cj|

, (3.21)

Two users are more similar if their check-in location overlaps more, regardless of how

frequently the check-in is.

• Cosine Similarity (CS)

Two users may visit the same locations but with different visiting frequencies. For

example, user ui may visit location l1 three times and location l2 two times, while

user uj may visit location l1 five times and location l2 ten times. The Jaccard Index

is unable to distinguish such check-in preference between ui and uj , but the Cosine

similarity can. It is defined as

simCS(ui, uj) =
Ci ·Cj

|Ci|2 × |Cj |2
, (3.22)

where |X|2 =
∑

k X(k) is the 2-norm of vector X.
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• Pearson Correlation Coefficient (PCC)

Different users may have different check-in preferences. Some users check-in frequently

while other users rarely check-in. PCC is the measure to capture such variance.

simPCC(ui, uj) =

∑
k(Ci(k)− C̄i) · (Cj(k)− C̄j)√
(Ci(k)− C̄i)2

√
(Cj(k)− C̄j)2

, (3.23)

where Ci(k) is ui’s historical check-in count on location lk.

Example 3.5 Give two users u1 and u2 with check-ins {l1, l2, l2, l3, l1, l1, l3, l2, l5} and

{l4, l1, l3, l5, l1, l1, l4, l3, l2}, respectively, let’s compute their check-in similarity with the Jac-

card Index, Cosine Similarity, and the Pearson Correlation Coefficient.

First, we organize the historical check-ins into vectors,

C1 = (3, 3, 2, 0, 1), C2 = (3, 0, 2, 2, 1). (3.24)

Note that the k-th element in Ci corresponds to ui’s check-in count on lk.

simJI(ui, uj) =
|Ci

⋂
Cj |

|Ci

⋃
Cj |

=
3

5
= 0.6, (3.25)

simCS(ui, uj) =
Ci ·Cj

|Ci|2 × |Cj |2
=

3× 3 + 3× 0 + 2× 2 + 0× 2 + 1× 1√
32 + 32 + 22 + 12 +

√
32 + 22 + 22 + 12

= 0.6881, (3.26)

simPCC(ui, uj) =

∑
k(Ci(k)− C̄i) · (Cj(k)− C̄j)√
(Ci(k)− C̄i)2

√
(Cj(k)− C̄j)2

=
1.2× 1.4 + 1.2× (−1.6) + 0.2× 0.4 + (−1.8)× 0.4 + (−0.8)× (−0.6)√

1.22 + 1.22 + 0.22 + (−1.8)2 + (−0.8)2 +
√
1.42 + (−1.6)2 + 0.42 + 0.42 + (−0.6)2

= −0.0673. (3.27)

where C̄i = 1.8 and C̄j = 1.6.

3.1.4 HYBRID MODELS

The models discussed above focus on only one type of LBSN information, i.e., spatial

sequence, temporal dynamics, or social correlations. According to available information, we

can choose corresponding models to make the prediction. However, when there is more than
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one type of information available, different information may complement each other. For

example, a user’s check-in location is correlated to both his current geographical position

and time. To fully exploit the heterogeneous information, a hybrid model can be considered

for location prediction. Hybrid models can be classified into feature based classification

models and information based probabilistic models.

Feature Based Classification Model

The feature based classification model applies supervised learning [38] to predict a user’s

check-in location. It gathers training data containing features with labels; learns a model

based on the training set; applies the model to predict the labels of the test data. We

provide further details next.

1. For each observed check-in represented as a (u,l) pair, a feature vector is constructed

w.r.t. the user u and location l involved in the check-in action. According to available

information, features can be roughly classified as spatial features (e.g., the number of

times u has previously checked-in at l, the total number of times l has been checked-in

by all the users, etc.), temporal features (e.g., the number of times u has checked-in

at l at different hours of the day, or days of the week, etc.), and social features (the

total number of friends who checked-in at l, etc.).

Then, a set of unobserved check-ins (u,l) are sampled. The sample size is the same as

that of observed check-ins. For each pair of unobserved (u,l), a feature vector is also

constructed following the same procedure for observed check-ins. The training data is

organized as a set of (feature vector, label) pairs, where each observed check-in feature

vector is associated with a positive label, and each unobserved check-in is associated

with a negative label.

2. Classification methods, e.g., logistic regression, SVM, decision tree, can be applied on

the training data to train a prediction model. Various tools can be used to learn the

model, including WEKA [37] and LIBSVM [10].

3. To predict whether u would check-in at l, the learned model is applied on the feature

vector constructed from the target pair (u,l).

Chang et al. [11] utilize the logistic regression model to combine a set of features

extracted from Facebook data. The features include a user’s previous check-ins, user’s

friends’ check-ins, demographic data, and distance of place to user’s usual location. Their

results demonstrate that the number of previous check-ins by the user is a strong predictor,

while previous check-ins made by friends and the age of the user are also good features for

prediction. The regression model is formulated as

P (cn = l|tn = t,Xu
t ) =

1

1 + exp−Xu
t θ

(3.28)
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where Xu
t ∈ R is a vector of features of user u at time t, and θ ∈ R is a vector of feature

parameters.

Information Based Probabilistic Model

The information based probabilistic model first makes predictions with each type of in-

formation, and makes the final prediction by combining all predictions through certain

probabilistic assumptions. For example, linear combination is mostly used for integrating

social friendship with spatio-temporal patterns. The probability of a user u’s next visit at

a location l, i.e., P (cn = l), is computed as a weighted combination of both social effect

P (cn = l|HF (u)) and non-social effect P (cn = l|Hu), as shown in Eq. (3.29). The probability

of social effect is based on the user’s friends’ check-in history HF (u), while the probability

of non-social effect considers the user’s own check-in history Hu.

P (cn = l) = αP (cn = l|Hu) + (1− α)P (cn = l|HF (u)) (3.29)

Cho et al. [17] consider the user check-in probability as a linear combination of social

effect and non-social effect. The social effect is modeled through the Independent Social

Mobility Model, while the non-social effect is about the periodic patterns, which consider

the user’s personal movement following a 2-D Gaussian distribution, with the two Gaussian

centers focusing on home and work.

Gao et al. [27] propose a social-historical model integrating the social ties and his-

torical ties of a user for location prediction, as illustrated in Figure 3.4. Both ties generate

the probability of next location based on the observation of the previous check-in sequence

with the Combined Markov model. The historical ties consider the user’s own check-in se-

quence, and the social ties consider the check-in sequences of the user’s friends. A parameter

η ∈ [0, 1] is introduced to control the weight between historical ties and social ties. For a

particular user ui, the probability of the next check-in location is defined as

P i
SH(cn = l) = ηP i

H(cn = l) + (1− η)P i
S(cn = l), (3.30)

where P i
H(cn = l) is the probability of ui’s check-in at location l from his historical ties, and

P i
S(cn = l) from his social ties. Social information makes around a 20%-30% contribution

in predicting a user’s next location.

Conditional probability is also introduced to integrate the spatial information and

temporal information. Given a series of historical visits in a previous time section Hu, and

a context of the latest visit location Cu with the time of the next visit tn, the location

prediction problem can be described as finding the probability

P (cn = l|tn = t,Hu, Cu), (3.31)
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Using Bayes’ rule, the probability in Eq. (3.37) is equivalent to:

P (cn = l|tn = t,Hu, Cu)
=
P (cn = l, tn = t|Hu, Cu)

P (tn = t)

∝ P (cn = l, tn = t|Hu, Cu)
= P (tn = t|cn = l,Hu, Cu)P (cn = l|Hu, Cu)
= P (tn = t|cn = l,Hu)P (cn = l|Hu, Cu), (3.32)

Note that we consider

P (tn = t|cn = l,Hu, Cu) = P (tn = t|cn = l,Hu). (3.33)

under the assumption that the probability of the current visit time is relevant to the current

visit location but not other recently visited locations.

As we can see, the first part P (tn = t|cn = l,Hu) in Eq. (3.32) can be computed with

MFT-based model based on temporal dynamics, and the second part P (cn = l|Hu, Cu) can
be computed with Markov-based model based on sequential patterns.

Most current works report very limited improvement by utilizing social network infor-

mation in LBSNs. The model that considers social networks performs slightly better than

that does not consider social networks. However, we cannot conclude that social networks

have no contributions to a user’s mobility. It is still an open problem.

3.2 HOME LOCATION PREDICTION

The motivation of home location prediction arises from the sparsity of available user home

locations on popular social networks such as Twitter and Facebook. Based on the statistics

from [15], only 26% of Twitter users list their locations with granularly as a city name, and

fewer than 0.42% of all tweets use the geo-tagging function to indicate their locations. The

awareness of user home location could provide an opportunity to study geo-social networks

from a user’s ego-centric view, and improve targeting advertisement regions and better

summarize the local news for nearby users. Therefore, obtaining the user home location is

helpful to studying human mobility on location-based social networks.

In social media, a user commonly specifies his hometown information in his profile at

a city level, which limits the geographical granularity of the ground truth we can generate.

Thus, the prediction of home location is commonly also at a city level, which could be

compared with the ground truth to compute the prediction accuracy.

The home location prediction task becomes trivial once sufficient check-in history

can be observed from a user, as one intuitive way is to find the city which contains the

majority of the user’s historical check-ins as the prediction. Improvements can be made

by taking the geographical average on the user’s historical check-in locations within the
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city, which may output a home location with geographical granularity finer than the city

level. However, given the geographical sparsity discussed above, a large number of users do

not have sufficient check-in history, and the home location prediction task is specifically

proposed for these users. Many other types of information can be used for prediction.

Among current approaches, network information and content information are the two

most widely used types of information. The content-based approaches [15, 39] study the

location information implicated in a user’s tweet content, and they make location prediction

based on the correlation between specific terms in tweets and their corresponding locations.

3.2.1 CONTENT-BASED PREDICTION

Content-based home location prediction uses the content published by a user to predict the

user’s home location. Let Wu denote the user u’s content in terms of words and lu denote

the user’s location. Generally, the content-based methods aim to model the relationship

between Wu and u for prediction. Given the words published by a user, the following

probabilistic model is investigated by Cheng et al. [15],

p(l|wu) =
∑

w∈wu

p(l|w) ∗ p(w) (3.34)

where w is a word in Wu, and the location probability is computed as the aggregation of

all words posted by the user. p(w) and p(l|w) are pre-calculated through the training data.

p(w) is defined as the prior probability of w in the whole corpus,

p(w) =
count(w)

N
, (3.35)

where count(w) is the number of occurrences of the word w, and N is the total number of

tokens in the corpus. p(l|w) is the probability of the location being city l given the observed

word w,

p(l|w) = count(w, l)

count(w)
, (3.36)

where count(w, l) is the number of occurrence of w in city l. Laplace smoothing is commonly

applied to avoid the 0 value,

p(l|w) = count(w, l) + 1

count(w) + V
, (3.37)

where V is the total number of cities.

The above approach directly models the relationship between the content and lo-

cation. Another method assumes that the user’s home locations can be represented as a
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certain function. For example, Eisenstein et al. [22] adopt a linear function to model the

relationship

llatu = wT
ua

lat

llngu = wT
ua

lng, (3.38)

where llat and llng are latitude and longitude of location l, wu is the word vector extracted

from the user’s published content, and alat and alng are the corresponding coefficients. The

prediction problem is then modeled as the following minimization problem

∑

u

(wT
ua

lat − llatu )2 + (wT
ua

lng − llngu )2

+ λlat‖alat‖1 + λlng‖alng‖1. (3.39)

where llat, llng, andwu are extracted from (content, location) pairs in the training data. The

learning process of this model is beyond the scope of this book. For more details, the reader

can refer to [22]. By solving the above optimization problem, alat and alng can be learned.

Then, for a new user, via obtaining his content organized as wu, the predicted location of

the user is outputted as (l̂latu , l̂lngu ) with each element computed through Eq. (3.38).

3.2.2 NETWORK-BASED PREDICTION

Different from content-based prediction, network-based prediction focuses on the relation-

ship between geographical distance and social friendship, referred to as the inverse distance

rule discussed in Section 2.4.1. Specifically, it infers a user’s home location from his social

friends’ home locations.

Figure 3.5: The probability of friendship over geographical distance ([3]).
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Backstrom et al. [3] pioneered work in home location prediction with social friendships

on Facebook. They discover that the probability of a link being present between two nodes

is a function of their geographical distance according to Figure 3.5

p(x) = a(b+ x)−c, (3.40)

where the parameters a, b, and c are empirically determined. The exponent in this function

is close to −1, which indicates that the probability of friendship between two users is roughly

inversely proportional to their geographical distance.

With the parameters a, b, and c available, one can compute the likelihood of a user

u’s social connections if he lives at a location lu based on the observed home locations of his

friends. Let Lf
u be the set of locations of u’s friends; the likelihood for all the connections

of u whose home location is lu can be modeled as
∏

lf∈Lf
u

p(|lu − lf |)
∏

lr 6∈Lf
u

1− p(|lu − lr|), (3.41)

where (lu − lf ) denotes the distance between u and f , and p(|lu − lf |) is the probability

of observed friendship connection between u and f . 1− p(|lu − lr|) is the probability of

non-observed connection between u and r.

Since the computing of
∏

lr 6∈Lf
u
1− p(|lu − lr|) is a bit expensive, an alternative ap-

proach is found. Let L be the locations of all the users; the likelihood can be defined as

∏

lf∈Lf
u

p(|lu − lf |)
1− p(|lu − lf |)

Su. (3.42)

where Su =
∏

lr∈L 1− p(|lu − lr|) is computed between each user u and every other user

r, which is independent to u’s social connections. Thus, for each u, his Su can be pre-

computed. To predict the home location of user u, we find a location lu which maximize

the likelihood of Eq. (3.42). Since lu is mostly likely co-located with one of u’s friends, we

evaluate the likelihood of each location of u’s friends, and pick the one with the highest

probability as home location.

McGee et al. [67] further improved this approach by considering the tie strength of

users’ social connections. The basic idea is that instead of using a unique function in E-

q. (3.42) to model all the social connections, connections with different tie-strengths could

be treated differently. Thus, it firstly classifies the connections into different groups accord-

ing to their different tie-strengths. Then, for each group of connections Gi, its corresponding

function pGi
in Eq. (3.40) w.r.t. the parameter set (aGi

, bGi
, cGi

) is determined. The final

likelihood is the aggregation of all the connections with their corresponding pGi
.

According to McGee et al. [67], the term Su has slight influence in the final prediction

performance. Thus, if the computation time is a concern in performance, Su can be removed

from Eq. (3.42) without much performance loss.
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3.3 EVALUATION METRICS

There are two commonly used evaluation metrics for location prediction, accuracy and

distance. The former measures the prediction accuracy, the fraction of correctly predicted

locations over the total number of predicted locations in the testing set. It is widely used in

the next-location prediction task [3, 17, 27]. Sometimes its variants are used. For example,

top-k accuracy is utilized in [15]. It returns the top k candidates of prediction for a location,

and treats a prediction as correct as long as the correct location is among the top k returned

locations. Here, k is usually selected as 2, 3, 5, and 10.

For home location prediction, distance is used to evaluate the performance. Expected

Distance Error [15, 17] computes the geographical distance between the real location and

the estimated location, averaged over all predicted locations.

AvgErrD(U ) =
1

|U |
∑

u∈U

Err(u), (3.43)

where U is the set of users whose locations to be predicted in the test data. Err(u) is

defined as the distance error of user u,

Err(u) = d(lact(u), lest(u)) (3.44)

where lact(u) is the actual location of u, lest(u) is the estimated location of u, and d(x, y)

is a function that computes the geographical distance between two locations x and y.

Similarly, accuracy@K of distance error is also used to evaluate the performance of

the home location prediction [67].

ACC(U )@K =
|{u ∈ U : Err(u) ≤ K}|

|U | . (3.45)

where K is a constant commonly set as 25 (miles).

3.4 SUMMARY

The task of location prediction focuses on capturing a user’s repetitive check-in behavior

and predicting which visited location the user would like to visit again. According to the

power-law distribution of check-ins, both repetitive check-ins and cold-start check-ins are

important in human mobility. Both academia and industry pay attention to location predic-

tion and develop state-of-the-art methods for capturing human repetitive check-in behavior

for location prediction.

The study of repetitive check-in behavior relies on the analysis of a user’s check-

in history. Location prediction methods generally leverage the historical information of a

user’s check-in behavior and his network information to predict his locations, including next

visited locations and home locations. Algorithms for next visited location prediction can
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be classified into sequential patterns, temporal dynamics, social correlations, and hybrid

models. Among them, social correlations can help predict not only a visited location, but

also a new location. Since social correlations only correspond to 30% prediction effect,

hybrid models considering social correlations and spatio-temporal patterns usually output

a visited location.

In the next chapter, location recommendation methods are introduced to study check-

ins on new locations. Spatial, temporal, social and content-based models focusing on this

behavior will be discussed for new location prediction.



57

C H A P T E R 4

Finding New Locations to Visit

An increasing number of locations with specific functions are called points of interest (POIs),

e.g., restaurants, theaters, stores, and hotels, to enrich people’s life and entertainment.

Generally, people want to explore the city and neighborhood in their daily life, and find a

“new” place to go (e.g., a new restaurant, a new store) which they have never visited before.

To predict where to go is a decision making problem related to the user’s personal interests.

A large number of POIs presents a problem of “choice paralysis” [8]. When exploring a new

place, we are facing too many location choices and do not know which one best matches

our interests. This corresponds to a task called location recommendation, which aims to

help users filter out uninteresting POIs and find a satisfying decision [104, 117].

In the last decade, recommender systems have been widely studied among various

categories, such as movie recommendation [47], job recommendation [98], item recommen-

dation [89], and news recommendation [91]. Location recommendation is a sub-category of

recommender systems. Thus, technologies that applicable to general recommender systems

can also be considered for location recommendation with some performance loss [90]. In the

following sections, we first introduce the general recommender systems, and then discuss

how to design location recommender systems based on mobility patterns on LBSNs.

4.1 RECOMMENDER SYSTEMS

Recommender systems refers to platforms that apply knowledge discovery techniques to

analyze user preferences and make recommendations about information, items, or services.

The techniques used by recommender systems can be generally classified into three main

categories: collaborative filtering, content-based, and hybrid recommendation, as shown

in Figure 4.1. Among them, collaborative filtering is the most successful, which has been

proven effective and efficient in practice [88].

Collaborative Filtering (CF) considers that two users with similar behavior in the past

(e.g., watching similar movies, purchasing similar products, visiting similar restaurants)

would have similar behavior in the future. It contains memory-based and model-based

approaches. Before discussing each approach, we first introduce the data representation of

check-ins for collaborative filtering.

4.1.1 CHECK-IN DATA REPRESENTATION

Generally, check-ins are organized as a user-location matrix, as shown in Table 4.1,
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Recommender 
Systems 

Collaborative 
Filtering 

Memory-based 

User-based 

Item-based 

Model-based 

 

Latent Factor Model  

Bayesian Model 

…… 

Content-based Hybrid 

Figure 4.1: Hierarchy of general recommender systems
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Table 4.1: An example of user-location matrix

l1 l2 l3 l4 l5 l6 l7
u1 1 3 2 4

u2 2 3 3 2 4

u3 3 2 3 5

u4 2 8 2

u5 4 7 2 3

The above check-in matrix is denoted as C with each entry Ci,j indicating that ui
has checked-in at lj for Ci,j times. The empty entry denotes that there is no check-in. For

example, C2,4 = 3 indicates that u2 has visited l4 three times; C2,3 and C2,5 are empty,

indicating that u2 has not checked-in at l3 and l5. Note that sequential information of

check-ins is lost in matrix representation.

A user can check-in at a location many times, e.g., visiting a favorite restaurant every

week. This could make certain entry values in the matrix much greater than others. Such

entries may skew the computation of user preference similarity and affect the recommenda-

tion quality. Thus, two alternatives have been widely used to replace the original check-in

matrix. One is binary representation, and the other is normalized representation.

In the binary representation, each entry is represented by 0 or 1 based on whether

a checked-in is observed. If a user has checked-in at a location, the corresponding entry

is filled with 1, otherwise 0 or left empty. Table 4.2 presents the binary representation of

check-ins from Table 4.1.

Table 4.2: The binary representation of check-in actions

l1 l2 l3 l4 l5 l6 l7
u1 1 0 1 1 0 1 0

u2 1 1 0 1 0 1 1

u3 1 0 1 0 1 0 1

u4 0 0 1 0 1 0 1

u5 0 1 1 0 0 1 1

In the normalized representation, each entry value is mapped to [0,1] with a pre-

defined normalization function. Table 4.3 lists some common functions. For example, using

an inverse function to normalize the check-in matrix, we obtain the representation in Ta-

ble 4.4.

The choice of normalization functions depends on data and recommendation algo-

rithms. Generally, the normalized representation works better than the binary representa-

tion since the latter does not distinguish a user’s preferences on different visited locations.
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Table 4.3: Normalization functions for check-in matrix

Normalization Strategy Row-based Column-based Matrix-based

sum Ĉi,j=
Ci,j∑
j Ci,j

Ĉi,j=
Ci,j∑
i Ci,j

Ĉi,j=
Ci,j∑

i

∑
j Ci,j

max Ĉi,j=
Ci,j

maxj(Ci,j)
Ĉi,j=

Ci,j

maxi(Ci,j)
Ĉi,j=

Ci,j

maxi,j(Ci,j)

sigmod function Ĉi,j=
1

1+e−Ci,j

inverse function Ĉi,j=
1

1+C−1
i,j

Table 4.4: Normalizing check-in actions with the inverse function

l1 l2 l3 l4 l5 l6 l7
u1 0.5000 0.7500 0.6667 0.8000

u2 0.6667 0.7500 0.7500 0.6667 0.8000

u3 0.7500 0.6667 0.7500 0.8333

u4 0.6667 0.8889 0.6667

u5 0.8000 0.8750 0.6667 0.7500

4.1.2 MEMORY-BASED COLLABORATIVE FILTERING

The memory-based collaborative filtering uses entire check-in matrix to recommend items.

It has been adopted in many commercial systems. According to whose similarity it relies

on to perform the recommendation, approaches can be classified into user-based and item-

based collaborative filtering.

User-based Collaborative Filtering

The idea of user-based collaborative filtering is to capture a user u’s preferences on unvisited

locations based on the K users most similar to him. It contains three steps:

1. Select K users most similar to u as his neighborhood Nu. user similarity is computed

based on a similarity measure, as discussed in Chapter 3.

2. Aggregate the preferences of users from N (u) on the locations unvisited by u, deem

them as u’s preferences. Eq.( 4.1) is a widely used aggregation function.

Ĉi,j = C̄i +

∑
uk∈N (ui)

sim(ui, uk)(Ck,j − C̄k)∑
uk∈N (ui)

sim(ui, uk)
, (4.1)

where C̄i is the average check-in count of ui on his visited locations, defined as

C̄i =
1

|Ii|
∑

j∈Ii

Ci,j (4.2)
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where Ii represents ui’s visited locations.

3. Rank u’s preferences on those unvisited locations and select the top N locations for

recommendation.

Below is an illustrative example of user-based collaborative filtering.

Example 4.1 Given the check-in matrix in Table 4.1, recommend a location to u1 with

user-based collaborative filtering.

In the first step, vector cosine similarity between u1 to other users is computed based

on their check-in count. For example, the similarity between u1 and u3 is

sim(u1, u3) =
1 ∗ 4 + 3 ∗ 6 + 2 ∗ 0 + 0 ∗ 1√
(12 + 32 + 22)

√
(42 + 62 + 12)

= 0.8076 (4.3)

Table 4.5 lists the similarities related to u1.

Table 4.5: Check-in similarity between u1 and other users

u2 u3 u4 u5
u1 0.4507 0.2397 0.1291 0.5995

We set K = 3, and select the top K users most similar to u1, corresponding to the

neighborhood set N (u1) = {u2, u3, u5}.
In the second step, we compute the average check-in count of each user, listed in

Table 4.6, and then compute the preferences of u1 on his unvisited locations {l2, l5, l7} as

in Eq. (4.1).

Table 4.6: Average check-in count of each user

u1 u2 u3 u4 u5
Avg. Check-in Count 2.5 2.8 3.25 4 4

ˆC1,2 = 2.5 +
0.4507 ∗ (3− 2.8) + 0.5995 ∗ (4− 4)

0.4307 + 0.5995
= 2.5875

ˆC1,5 = 2.5 +
0.2397 ∗ (3− 3.25)

0.2397
= 2.25

ˆC1,7 = 2.5 +
0.4507 ∗ (4− 2.8) + 0.2397 ∗ (5− 3.25) + 0.5995 ∗ (3− 4)

0.4307 + 0.2397 + 0.5995
= 2.7841 (4.4)

In the third step, the ranking list of u′1s preferences on l2, l5, and l7 is generated, i.e.,

(l7 > l2 > l5). Assuming that N = 1 for top N recommendation, the user-based collaborative

filtering returns l7 as the recommended location to u1.
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Item-based Collaborative Filtering

Item-based collaborative filtering adapts a similar recommendation strategy as user-based

collaborative filtering. Instead of finding similar users, it seeks similar locations and ag-

gregates the check-in counts of these locations with Eq. (4.5). It computes Ĉi,j for each

unvisited lj by ui in order to perform recommendation.

Ĉi,j = C̄j +

∑
lk∈N (lj)

sim(lj, lk)(Ci,k − C̄k)∑
lk∈N (lj)

sim(lj, lk)
, (4.5)

where C̄j is the average check-in count of lj , sim(lj, lk) is the check-in similarity between

lj and lk, N (lj) contains K locations most similar to lj .

Item-based collaborative filtering can be used in another perspective of recommen-

dation, i.e., targeting users who may be interested in a given location. For example, a

restaurant prepares 100 coupons of its cuisine and plans to distribute them to new cus-

tomers. In order to make the best use of these coupons, the restaurant wants to seek 100

customers who are potentially more interested in the cuisine than other users. The item-

based collaborative filtering can help on this purpose. The following example illustrates its

recommendation process.

Example 4.2 Given the check-in matrix in Table 4.1, recommend a set of users who may

be interested in l2 with item-based collaborative filtering.

Fist, cosine similarity between l2 and other locations is computed based on their check-

in count. Table 4.7 lists the similarities related to l2. With K = 3, the top K locations most

similar to l2 are selected, resulting in the neighborhood set N (l2) = {l3, l6, l7}.
Table 4.7: Check-in similarity between l2 and other locations

l1 l3 l4 l5 l6 l7
l2 0.3207 0.6893 0.4992 0 0.5715 0.6532

Second, we compute the preferences of users who have not visited l2 as in Eq. (4.5).

ˆC1,2 = 3.5 +
0.6893 ∗ (3− 3.5) + 0.5715 ∗ (4− 2.67)

0.6893 + 0.5715
= 3.8295

ˆC3,2 = 3.5 +
0.6893 ∗ (2− 3.5) + 0.6532 ∗ (5− 3.5)

0.6893 + 0.6532
= 4.0746

ˆC4,2 = 3.5 +
0.6893 ∗ (2− 3.5) + 0.6532 ∗ (2− 3.5)

0.6893 + 0.6532
= 1.2318

(4.6)

For top-1 recommendation, u3 is recommended with the highest recommendation value

on l2.
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4.1.3 MODEL-BASED COLLABORATIVE FILTERING

Memory-based collaborative filtering is efficient and easy to adopt. However, there are two

shortfalls when it is applied to large-scale and sparse data.

• Sparsity

LBSN data is sparse due to the user-driven check-in property. The density of a

check-in matrix is commonly between 10−4 and 10−5. With sparse data, the similarity

measured from check-ins could be unreliable [73]. In an extreme case, say, the “cold-

start” problem, a new user with no check-in history has the similarity of 0 to any

other users.

• Scalability

Memory-based collaborative filtering makes use of the whole check-in matrix to per-

form recommendation, which requires a large storage space. In addition, the compu-

tation of K nearest neighbors is inefficient with a large number of users or items.

Model-based collaborative filtering is proposed to address these issues. It uses data

mining and machine learning techniques to learn a model from training data, and ap-

plies the model to test data to predict users’ preferences on different locations. Typical

approaches in this category includes Bayesian Models, Latent Factor Models, and Classifi-

cation/Regression Models. Among them, latent factor models such as matrix factorization

have been widely used.

Matrix Factorization for Recommendation

The basic idea of matrix factorization is to assume that there are certain latent factors

related to both users’ interests and locations’ properties. As an example of restaurant

check-ins, latent factors could be the taste, quality, environment, price, etc. A check-in

action on the restaurant is resulted by the combinational effects of a user’s interests and

the restaurant’s properties on these factors. For example, if a user would like to have seafood

in a romantic environment, he may be interested in a restaurant that serves fresh seafood

with beautiful ocean view.

Let u = {u1, u2, ..., um} be the set of users, and l = {l1, l2, ..., ln} the set of locations,

where m and n denote the numbers of users and locations, respectively. Let U ∈ R
m×d be

the user check-in interests and L ∈ R
n×d the location properties, both on latent factors,

with d≪ min(m,n) being the number of latent factors. With matrix factorization, each

check-in actions Ci,j is approximated as a product of two vectors Ui and Lj,

Cij ≈ UiL
⊤
j , (4.7)

where C ∈ R
m×n is the check-in matrix as in Table 4.1.
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Location recommendation models with matrix factorization approximate ui’s check-in

preference on an unvisited lj by solving the following optimization problem:

min
U,L

m∑

i

n∑

j

(Cij −UiL
⊤
j )

2. (4.8)

In this model, each observed check-inCi,j is approximated viaUiL
⊤
j . Their difference,

Ci,j −UiL
⊤
j , corresponds to the approximation error. The goal is to minimize this error

and make UiL
⊤
j as close to Ci,j as possible. The outputs are user latent interests U and

location latent properties L.

After obtaining U and L, the missing value in C, C̃ij, indicating the preference of

ui on an unvisited location lj, is then approximated by UiL
⊤
j . To avoid over-fitting, two

regularization terms are applied to U and L, respectively. Eq. (4.8) can be rewritten as

min
U,L
‖C−UL⊤‖2F + α‖U‖2F + β‖L‖2F , (4.9)

where α and β are non-negative parameters to control the capability ofU and L for avoiding

over-fitting. || · ||F is the Frobenius norm of a matrix and ||X||F =
√∑m

i

∑n
j X

2
i,j.

Since there are multiple variables in Eq. (4.9), the alternating algorithm is commonly

applied to find optimal solutions for U and L. The key idea is to minimize Eq. (4.9) w.r.t.

one variable while fixing the other variable(s). It works as follows:

1. Initialize L randomly.

2. Fix L, update U by minimizing Eq. (4.9).

3. Fix U, update L by minimizing Eq. (4.9).

4. Repeat Steps 2 and 3 until U and L converge or reach a predefined number of maxi-

mum iterations.

Steps 2 to 3 are the most important. Several algorithms can be used to solve the

minimization problem. We introduce a typical one, Gradient Descent.

The Gradient Descent algorithm is used to find a local minimum of a function.

It starts at an initial point, and moves towards the local minimum through a set of steps.

Each step relates to two factors: 1) step direction; and 2) step size. The step direction is

computed as the negative of the gradient of the function at the current point. The step

size is commonly set as empirical values or chosen through Goldstein Conditions [46]. For

ease of presentation, we choose a fixed value in the following example. Generally, given an

optimization function

min
x
f(x) (4.10)
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Gradient Descent first initializes x with a random value x0, and then updates x iteratively

through the following rule:

x1 = x0 − δ ∗
∂f

∂x
|x=x0

x0 = x1, (4.11)

where −∂f
∂x |x=x0

is the step direction at x0, computed as the negative of the partial deriva-

tion of f at x0. δ is the corresponding step size. The updating process iterates until x

converges.

We apply the Gradient Descent algorithm to solve Eq. (4.9). According to the matrix

trace operation,

‖X‖2F = Tr(X⊤X), (4.12)

where Tr(X) =
∑

iXi,i is the matrix trace, which sums all the diagonal values of X.

Thus, Eq. (4.9) is equivalent to

min
U,L

Tr
(
(C−UL⊤)⊤(C−UL⊤)

)
+ αTr(U⊤U) + βTr(L⊤L). (4.13)

Expanding Eq. (4.13), we obtain,

min
U,L

Tr(C⊤C−C⊤UL⊤ − LU⊤C+ LU⊤UL⊤) + αTr(U⊤U) + βTr(L⊤L). (4.14)

Eq. (4.14) is commonly referred to as a objective function, denoted as J . Taking the

partial derivation of J on U and V,

∂J
∂U

= −2CL+ 2UL⊤L+ 2αU (4.15)

∂J
∂L

= −2C⊤U+ 2LU⊤U+ 2βL. (4.16)

With the above derivations, Gradient Descent solves Eq. (4.9) as follows:

1. Initialize U and L randomly

2. Compute ∂J
∂U ; Update U← U-δU ∗ ∂J

∂U

3. Compute ∂J
∂L ; Update L← L-δL ∗ ∂J

∂L

4. Repeat Steps 2 and 3 until U and L converge or reach a predefined number, itermax,

of maximum iterations.
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Example 4.3 Given the check-in matrix in Table 4.1, solve the matrix factorization problem

in Eq. (4.9) with Gradient Descent.

Step 1. Set up the input variables {U0,L0, α, β, itermax,d}. We set α and β as 0.1,

itermax as 1000, the number of latent factors d as 2, and randomly initialize U and L as

in Eq. (4.17).

U =




0.2581 0.7112

0.4087 0.2217

0.5949 0.1174

0.2622 0.2967

0.6028 0.3188




L =




0.4242 0.7303

0.5079 0.4886

0.0855 0.5785

0.2625 0.2373

0.8010 0.4588

0.0292 0.9631

0.9289 0.5468




(4.17)

Step 2. Update U and V iteratively. For simplicity, we empirically set both δU and

δL as 0.01. In the first iteration, compute ∂J
∂U

∂J
∂U

= −2CL+ 2UL⊤L+ 2αU

= −2




1 0 3 2 0 4 0

2 3 0 3 0 2 4

3 0 2 0 3 0 5

0 0 2 0 8 0 2

0 4 7 0 0 2 3



∗




0.4242 0.7303

0.5079 0.4886

0.0855 0.5785

0.2625 0.2373

0.8010 0.4588

0.0292 0.9631

0.9289 0.5468




+ 2




0.2581 0.7112

0.4087 0.2217

0.5949 0.1174

0.2622 0.2967

0.6028 0.3188



∗




0.4242 0.7303

0.5079 0.4886

0.0855 0.5785

0.2625 0.2373

0.8010 0.4588

0.0292 0.9631

0.9289 0.5468




⊤

∗




0.4242 0.7303

0.5079 0.4886

0.0855 0.5785

0.2625 0.2373

0.8010 0.4588

0.0292 0.9631

0.9289 0.5468




+ 2 ∗ 0.1




0.2581 0.7112

0.4087 0.2217

0.5949 0.1174

0.2622 0.2967

0.6028 0.3188




=




0.6866 −8.9328
−11.4363 −13.0199
−14.0907 −12.4113
−14.8288 −9.4157
−7.3918 −15.5230




(4.18)
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Update U as

U = U− δU ∗
∂J
∂U

=




0.2581 0.7112

0.4087 0.2217

0.5949 0.1174

0.2622 0.2967

0.6028 0.3188



− 0.01 ∗




0.6866 −8.9328
−11.4363 −13.0199
−14.0907 −12.4113
−14.8288 −9.4157
−7.3918 −15.5230




=




0.2512 0.8005

0.5231 0.3519

0.7358 0.2415

0.4105 0.3908

0.6768 0.4740




(4.19)

Similarly, compute ∂J
∂L ,

∂J
∂L

=




−4.1231 −1.6727
−5.9024 −3.5723
−14.0845 −12.2855
−2.8054 −4.1485
−7.4539 −4.8363
−4.7040 −7.1421
−13.1224 −6.2763




(4.20)

update L=L-δL ∗ ∂J
∂L

L =




0.4654 0.7471

0.5669 0.5243

0.2264 0.7014

0.2905 0.2788

0.8756 0.5072

0.0763 1.0345

1.0601 0.6096




(4.21)

In the second iteration, U and L are updated as

U =




0.2455 0.8899

0.6386 0.4761

0.8821 0.3601

0.5641 0.4825

0.7649 0.6340




L =




0.5040 0.7625

0.6241 0.5658

0.3734 0.8436

0.3167 0.3232

0.9631 0.5590

0.1156 1.1087

1.2007 0.6842




(4.22)
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This process goes iteratively. We output U and L after 1000 iterations,

U =




0.0569 1.2655

0.4136 1.3708

1.6738 0.6082

2.6109 −0.4358
0.5964 2.4106




L =




0.4824 0.4912

0.0935 1.3638

0.8904 1.9367

0.0049 0.6666

2.6598 −0.6900
−0.0238 1.2734

1.4303 1.2145




(4.23)

In this example, U and L converge after 1000 iterations. Location recommendation

can be made based on them. For example, we perform top-1 recommendation to u5. We

multiply U and L as the approximation of check-in preferences to get Ĉ.

Ĉ = U ∗ L⊤ =




0.6490 1.7313 2.5016 0.8440 −0.7220 1.6101 1.6183

0.8728 1.9083 3.0232 0.9159 0.1542 1.7357 2.2564

1.1062 0.9858 2.6681 0.4136 4.0323 0.7345 3.1325

1.0456 −0.3503 1.4808 −0.2778 7.2453 −0.6171 3.2051

1.4717 3.3434 5.1997 1.6099 −0.0769 3.0553 3.7806




(4.24)

According to u5’s check-in history in Table 4.1, there are three unvisited locations l1,

l4, and l5. The estimated preferences of u5 on these locations in Eq. (4.24) are 1.4717,

1.6099, and −0.0769, respectively. Thus, l4 is recommended to u5.

Another way to solve Eq. (4.9) is based on the closed-form solutions of each variable.

By setting the derivation of Eq. (4.15) and Eq. (4.16) to 0, we obtain

U(L⊤L+ αI) = CL

L(U⊤U+ αI) = C⊤U, (4.25)

where I is an identity matrix. Rewriting the above equations, we obtain the following

updating rules

U = CL(L⊤L+ αI)−1

L = C⊤U(U⊤U+ βI)−1 (4.26)

which correspond to the closed-form solutions of each variable.

A check-in matrix is usually large-scale and sparse. The computational cost of this

algorithm is very high due to the matrix inverse operation for large-scale matrix. Further-

more, taking matrix inverse requires the matrix to be full rank. Since a sparse matrix is

commonly rank-deficient, a pseudo-inverse operation with SVD decomposition is required.
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These constraints make the entire updating process inefficient. Thus, algorithms such as

Gradient Descent are generally applied for dealing with these issues, while the closed-

form solutions is usually applied to small data.

4.2 LOCATION RECOMMENDATION WITH LBSNS

The methods introduced above lay the foundation of location recommendation techniques.

However, they do not fully exploit the available information on LBSNs. In Chapter 1, we

show the “W4” information layout on LBSNs. In this section, we introduce location rec-

ommendation approaches specifically designed with these four types of LBSN information,

geographical influence, social correlations, temporal patterns, and content indications, as

well as their hybrids.

4.2.1 GEOGRAPHICAL INFLUENCE

Geographical influence has significant effects in human mobility. Generally, a user’s living

area is around some locations, such as home and office, with certain radius [13, 57]. When

recommending a location to a user, “how far the location is” is a common concern the user

has. Different from sequential-pattern-based approaches which predict visited locations of

users, location recommendation with geographical influence focuses on how a user’s future

check-in on an unvisited location is correlated to his previously visited locations according

to their geographical distance.

The “Lévy Flight” property in Section 2.4.2 indicates that the probability of two

locations being visited by a user is related to the distance d between them. Denote such

probability as p(d). Let D(li, lj) be the geographical distance between li and lj , I(li, lj) be

the indication function where I(li, lj) = 1 indicates that li and lj were visited by the same

user, and 0 otherwise. p(d) can be computed as

p(d) =
|{(li, lj)|D(li, lj) = d, I(li, lj) = 1}|

|{(li, lj)|D(li, lj) = d}| , (4.27)

which is the number of location pairs with distance d that were visited by the same user,

divided by the total number of location pairs with distance d. Figure 4.2 plots p(d) (y-axis)

with different d in kilometer (x-axis). The probability presents a power-law like distribution

over d, formulated as

p(d) ≈ a× db, (4.28)

where a and b are two parameters that control the power-law distribution.

Location recommendation with geographical influence considers the above power-

law distribution [104]. The basic idea is to firstly learn the parameters a and b from the

observed check-ins. Then, given an unvisited location lx of user u, its co-visiting probability

is estimated with Eq. (4.28) based on its distance to u’s previous visited locations.
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Figure 4.2: Power-law distribution of geographical influence (based on ([104])).

Denote p̂(di,j) as the estimated probability of li and lj being visited by the same user,

approximated with Eq. (4.28). p(di,j) is the observed probability computed with Eq. (4.27).

a and b can be learned by minimizing the difference between p̂(di,j) and p(di,j) for all pairs

of locations, i.e.,

min
a,b

∑

(li,lj)∈M

(p(di,j)− p̂(di,j))2, (4.29)

where M is the set of location pairs in training data.

Eq. (4.29) can be considered as a least squares problem by applying log function to

both p(di,j) and p̂(di,j),

min
a,b

∑

(li,lj)∈M

(log p(di,j)− log p̂(di,j))
2

=
∑

(li,lj)∈M

(log p(di,j)− (log a+ b log di,j))
2

(4.30)

which can be reformulated as

min
w

∑

(li,lj)∈M

(yi,j −w⊤xi,j)
2 (4.31)
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where

yi,j = log p(di,j),w =

(
log a

b

)
,xi,j =

(
1

log di,j

)
(4.32)

Eq. (4.31) is a well-studied least squares problem with closed-form solutions. The

regularization term 1
2‖w‖2F is also commonly applied to avoid over-fitting. After a and b

are learned, one can perform location recommendation. For each unvisited location lx of u,

compute its check-in likelihood p(lx) as

p(lx) =
∏

lj∈Cu

p̂(dx,j) (4.33)

where Cu contains locations visited by u. The location with the maximum p(lx) will be

recommended to u, as it has the highest probability of being visited by u according to its

distance to u’s previously visited locations.

4.2.2 SOCIAL CORRELATIONS

Social correlations are commonly observed in human mobility especially visiting new loca-

tions. For example, a user visits a new restaurant following suggestions from his friends; a

user finds an interesting store by asking local friends when coming to a new city. Different

from next location prediction, where social information complements spatial and temporal

information to generate visited location candidates, location recommendation with social

correlations focuses on finding unvisited locations from a user’s friends’ check-ins based on

their social strength.

Location recommendation with social correlations includes “memory-based” and

“model-based” approaches, two variants of the corresponding models in general recom-

mender systems.

Memory-based Social Recommendation

Memory-based social recommendation infers a user’s preferences on an unvisited location

through his friends’ preferences on that location, as shown below,

Ĉi,j = C̄i +

∑
uk∈F(ui)

ξ(ui, uk)(Ck,j − C̄k)∑
uk∈F(ui)

ξ(ui, uk)
, (4.34)

where F(ui) is the set of ui’s friends. Compared to Eq. (4.1), a general memory-based

approach, it replaces the most similar users with social friends, under the assumption that

friends tend to visit similar places due to their social relation. ξ(ui, uk) is the tie-strength

between ui and uk, usually approximated by sim(ui, uj) and computed through their check-

in history, profile, etc.
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Eq. (4.1) needs to obtain the similarities between the target user and every other

user, while memory-based social recommendation only computes similarities between a

target user and his friends. Thus, memory-based social recommendation is more efficient

especially for the cases where users join and leave the system frequently. However, there is

a trade-off between efficiency and effectiveness. Friends are statically more similar to a user

than regular users; while it is not necessary that they are the most similar. Indeed, when

investigating the most similar users of a target user, only a small proportion of them are

the user’s friends. Thus, using only social information may have slightly worse performance

than Eq. (4.1).

Model-based Social Recommendation

Model based social recommendation is an extension of matrix factorization. It applies a

social regularization term to Eq. (4.9), as shown below:

min
U,L
‖C−UL⊤‖2F + α(‖U‖2F + ‖L‖2F ) + βTr(U⊤LU). (4.35)

where Tr(U⊤LU) is commonly referred to as the social regularization term, L is the Lapla-

cian matrix defined as

L = D− S, (4.36)

where S is the tie-strength matrix with Si,j being the tie-strength between ui and uj,

denoted as ξ(ui, uj) shown in Eq. (4.37). D is a diagonal matrix with Di,i =
∑

j Si,j .

S =




ξ(u1, u1) ξ(u1, u2) · · · ξ(u1, un)

ξ(u2, u1) ξ(u2, u2) · · · ξ(u2, un)
...

...
. . .

...

ξ(um, u1) ξ(um, u2) · · · ξ(um, un)


 (4.37)

The social regularization term Tr(U⊤LU) is derived from

1

2

∑

i

∑

j

ξ(ui, uj)‖Ui −Uj‖22 (4.38)

Eq. (4.38) assumes that a user’s interests on latent factors, Ui, are constrained by his

tie-strength with his friends. The more similar the two friends are, the closer their latent

interests should be. A large ξ(ui, uj) would force Ui to be as close to his friend’s latent

interests Uj as possible, while a small ξ(ui, uj) could make Ui loosely fit Uj . The constant
1
2 is added for calculation convenience. Figure 4.3 illustrates the idea of model-based social

recommendation. Eq. (4.35) can be solved with the same strategy in Example 4.3, and the

recommendation procedure is the same in a general recommender system.
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Figure 4.3: Model-based social recommendation

Figure 4.4: Daily check-in activities on LBSNs ([25])

4.2.3 TEMPORAL PATTERNS

Human mobility exhibits strong temporal cyclic patterns. Different from the temporal dy-

namics approaches for location prediction, location recommendation with temporal patterns

focuses on investigating a user’s time-dependent check-in interests on a new location. For

example, assume that a user has check-ins on l1, l2, and l3 at 13 : 00, location recommen-

dation aims to infer his interests on a new location (say, l4) at 13 : 00, which cannot be

solved by the temporal dynamics approaches.

Location recommendation with temporal patterns has a similar idea to collaborative

filtering. It infers a user’s check-in interests on a new location at a specific time period

based on other similar users’ check-ins at that time period. However, it needs to address a

temporal sparseness problem. For example, among the 24 hours of a day, a user does not

check-in at each hour; therefore, his check-ins at certain hours could be sparse. This makes

it difficult to infer his interests at these hours. Addressing such problem relies on using the

temporal properties of temporal cyclic patterns.
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Two temporal properties are observed in temporal cyclic patterns [25]: (1) temporal

non-uniformness: a user exhibits distinct check-in preferences at different hours of the

day; and (2) temporal consecutiveness: a user can have more similar check-in preferences

in consecutive hours than in non-consecutive hours. Figure 4.4 plots an illustrative example

of a user’s aggregated check-ins on his top 5 most visited locations over 24 hours on a

real-world LBSN datasets. Each cell represents the total number of check-ins at a specific

location during the corresponding hour, colored from black (least active) to white (most

active). The user’s check-in behavior presents a different check-in location distribution at

each hour, which changes continually over time.

The two temporal properties can help address the temporal sparseness problem. A

user’s interests at a specific time period can be inferred not only from other similar users’

check-ins at that time period (temporal non-uniformness), but also from his own check-

ins in nearby time periods (temporal consecutiveness). Below we discuss how to model

the two temporal properties for location recommendation.

The temporal non-uniformness can be investigated with the following model based

on Eq. (4.9),

min
Ut,L

T∑

t=1

‖Ct −UtL
⊤‖2F + α

T∑

t=1

‖Ut‖2F + β‖L‖2F . (4.39)

Compared to Eq. (4.9), it divides a user’s interests on latent factors into T time pieces Ut,

with each one inferred from the corresponding check-in matrix Ct. For example, T can be

set to 24, with each Ct consisting of check-ins at a specific hour t of the day, and Ut being

the corresponding user interests at t.

The temporal consecutiveness suggests that a user’s preference changes continually

over time, which can be modeled as below,

min

T∑

t=1

m∑

i=1

ψi(t, t− 1)‖Ut(i, :)−Ut−1(i, :)‖22, (4.40)

where ψi(t, t− 1) ∈ [0, 1] is defined as a temporal coefficient that measures the temporal

closeness of ui’s check-in preferences between t and t− 1. The larger ψi(t, t− 1) is, the

closer ui’s check-in preferences between t and t− 1. Several similarity measures can be

used to compute this value. For example, with cosine similarity, we could obtain

ψi(t, t− 1) =
Ct(i, :) ·Ct−1(i, :)√∑

j C
2
t (i, j)

√∑
j C

2
t−1(i, j)

. (4.41)
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when t = 1, Ut−1 = UT . Similar to the social regularization term, Eq. (4.40) also has its

matrix form,

min

T∑

t=1

Tr
(
(Ut −Ut−1)

⊤Σt(Ut −Ut−1)
)
, (4.42)

where Σt is the diagonal temporal coefficient matrix among m users,

Σt =




ψ1(t, t− 1) 0 · · · 0

0 ψ2(t, t− 1) · · · 0
...

...
. . .

...

0 0 · · · ψm(t, t− 1)


 . (4.43)

Combining Eq. (4.39) and Eq. (4.42), the final optimization problem with both tem-

poral non-uniformness and temporal consecutiveness properties can be formulated as

min
Ut,L

T∑

t=1

‖Ct −UtL
⊤‖2F + α

T∑

t=1

‖Ut‖2F + β‖L‖2F

+ λ

T∑

t=1

Tr
(
(Ut −Ut−1)

⊤Σt(Ut −Ut−1)
)
, (4.44)

where λ is a non-negative parameter to control the temporal consecutiveness. It can be

solved by the gradient descent algorithm with the similar procedure as shown in Exam-

ple 4.3. After Ut and L are learned, its product UtL can be used to recommend new

locations to a user at t.

4.2.4 CONTENT INDICATIONS

Content information on LBSNs could be related to a user’s check-ins, providing a unique

opportunity for location recommendation from a conceptual perspective. For example, by

observing a user’s comment on a Mexican restaurant discussing its spicy food, we observe if

the user is interested in spicy food or not. This is an example of user interests . By observ-

ing a location’s description as “vegetarian restaurant”, we may infer that the restaurant

serves “vegetarian food” and users who check-in at this location might be interested in the

vegetarian diet. This is an example of location properties . These two types of information

are representatives of user-generated content and location-associated content on LBSNs.

The former refers to comments that are left by users towards specific locations when they

check-in; the latter can be descriptive tags associated with specific locations.

Location recommendation with content indications leverages one or two types of the

above content information. The fundamental assumption is that users and locations can get

connected in the semantic level through geographical topics, as illustrated in Figure 4.5.
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Figure 4.5: Geographical topics connect users and locations (based on ([30]))

User-generated content can indicate user’s interests on geographical topics, while geograph-

ical topics can be assigned to locations by analyzing location-associated content. Note that

geographical topics are usually latent topics. Therefore, latent topic models such as LDA

or matrix factorization are usually applied to discover them. A matrix factorization model

with user-generated content is presented below,

min
U,L,G

J = ‖C−UL⊤‖2F + λ‖A−UG‖2F + α‖U‖2F + β‖L‖2F + γ‖G‖2F (4.45)

where C, U, and L are check-in matrix, user latent interests, and location latent properties

respectively as defined before. A is a user-word matrix extract from user-generated content,

and G represents word distribution over the latent geographical topics. As we can see, the

user latent interests in geographical topics U is factorized from both check-in actions C

and user-generated content A. Similarly, location-associated content can be modeled as

min
U,L,G

J = ‖C−UL⊤‖2F + λ‖B− LG‖2F + α‖U‖2F + β‖L‖2F + γ‖G‖2F (4.46)

where B is a location-word matrix extract from location-associated content. Similar to U,

L is factorized from both check-in actions C and location-associated content B.

The two types of content information can also be used in a unified model,

min
U,L,G

J = ‖C−UL⊤‖2F + λ1‖A−UG‖2F + λ2‖B− LG‖2F
+ α‖U‖2F + β‖L‖2F + γ‖G‖2F (4.47)

where user-generated content A and location-associated content B are factorized into us-

er latent interests U and location latent properties L, respectively, with a shared word

distribution over geographical topics G. U and L together generate check-ins C.
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Table 4.8: Geo-social groups
F F̄

D̄ SFD̄: Local Friends SF̄ D̄: Local Non-friends

D SFD: Distant Friends SF̄D: Distant Non-friends

4.2.5 HYBRID MODELS

Hybrid models combine different information discussed above for location recommendation.

Depending on how multiple types of information are combined, hybrid models can be

classified into joint model and fused model.

Joint Model

In a joint model, multiple types of information are considered as a component. Aspects

of the component are studied for designing location recommendation models. One typical

combination is of geographical and social information, generally referred to as geo-social

correlations.

There are strong correlations between geographical distance and social friendship on

LBSNs [17, 82]. The geographical distance plays an important role when constructing social

connection between two users, and social connections further affect two user’s geographical

distance. Therefore, considering both information together could better capture the user

preferences for location recommendation on LBSNs.

Location recommendation with geo-social correlations defines four geo-social groups

w.r.t. geographical distance D and friendship F , i.e., local friends SFD̄, distant friends SFD,

local non-friends SF̄ D̄, and distant non-friends SF̄D, as listed in Table 4.9. It assigns any

pair of users to one of the geo-social groups.

The geo-social group SFD captures a user’s local social correlation, such as going

out with friends, following friends’ recommendations. SFD̄ indicates a user’s distant social

correlation, such as visiting friends in other states. SF̄D suggests that a user goes to a

place where his local neighbors usually go to, which is referred to as confounding effect, i.e.,

people with the same environment tend to behavior similarly, and visit similar locations.

The last geo-social group, SF̄ D̄, can be explained as an unknown effect, suggesting that

a user would randomly visit some new location despite the correlation from his friends or

similar users. For example, visiting famous POIs.

Let’s define the probability of a user u checking-in at a new location l as Pu(l).

With the four geo-social groups, Pu(l) is considered as a weighted combination of the

four geo-social correlations, as shown in Eq (4.48). Figure 4.6 illustrates this geo-social

recommendation model.
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Figure 4.6: The geo-social correlations of check-ins on new locations ([28])
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Pu(l) = φ1Pu(l|OSF̄ D̄
) + φ2Pu(l|OSFD̄

)

+ φ3Pu(l|OSFD
) + φ4Pu(l|OSF̄D

), (4.48)

where φ1, φ2, φ3, and φ4 are parameters that govern the strengths of the four factors,

corresponding to geo-social correlation groups, satisfying

φ1 + φ2 + φ3 + φ4 = 1

φ1 ≥ 0, φ2 ≥ 0, φ3 ≥ 0, φ4 ≥ 0. (4.49)

Pu(l|OSx
) is the probability of visiting a location l with the correlation from geo-social

group OSx
only. User-based collaborative filtering approaches can be applicable,

Pu(l|Ox) = C̄u +

∑
uk∈Ox

sim(u, uk)(Ck,l − C̄k)∑
uk∈Ox

sim(u, uk)
(4.50)

The parameters φ1, φ2, φ3, and φ4 can be learned from training data with gradient

descent method in Example 4.3. The only difficulty is to meet the constraint in Eq. (4.49).

For the non-negativity constraint, one way is to apply a projection strategy which adjusts

the value of parameters in each iteration of gradient descent. If φx in an iteration is negative,

it is projected to 0. The projection rule is defined as

{
0 φx < 0

φx else

(4.51)

φx is then normalized to [0, 1], with φx = φx∑4
x=1 φx

to satisfy φ1 + φ2 + φ3 + φ4 = 1.

In practice, instead of considering φx as a constant value, it can be defined as a

function of features, e.g., a logistic function,

φx = f(wT fu + b)

=
1

1 + e−(wT fu+b)
, (4.52)

where fu is a feature vector consisting of features related to the user u and corresponding

social group OSx
. w and b are coefficients related to the features. Thus, instead of learning a

constant value φx, it learns feature coefficients w and b, and makes the model more flexible.

Fused Model

A fused model firstly uses each type of information to obtain recommendation results,

and then combines the results together. A fused model usually considers two types of
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information via the sum and the product rules. Following the sum rule, results from each

type of information are summed up with assigned weights.

Pu(l) =

n∑

i=1

αiP
i
u(l), (4.53)

where i is the information index, αi is the weight assigned, and P i
u(l) is the corresponding

recommendation results, indicating the probability of u visiting l based on the analysis of

information i.

Applying the product rule, results are multiplied together,

Pu(l) =

n∏

i=1

P i
u(l), (4.54)

Geographical influence and temporal patterns are combined with either the sum

rule [108] or the product rule [17]. Social correlations and geographical influence are fused

with the product rule [112]. Content indications and social correlations are fused with the

sum rule [100].

Some fused models consider more than two types of information. For example, Ye et

al. [104] combine a geographical influence model, a memory-based social recommendation

model, and a user-based collaborative filtering model as follows

Pu(l) = αP g
u (l) + βP s

u(l) + (1− α− β)Pub
u (l), (4.55)

where α and β are parameters to control weights. P g
u (l) is the probability of u visiting l

returned by the geographical influence model, P s
u(l) is the probability generated by the

memory-based social recommendation model, and Pub
u (l) is from the user-based collabora-

tive filtering model.

4.3 EVALUATION METRICS

The performance of location recommendation is evaluated with standard metrics, such as

Precision&Recall and RMSE. Precision evaluates how many locations that are recom-

mended to a user have been visited by the user after recommendation, while recall evaluates

how many locations visited by a user have been previously recommended to the user. In the

real-world online recommender systems, the number of locations recommended to a user

is usually fixed due to the limited slots available on a web page. Thus, top-N recommen-

dation is usually adopted while Precision@N and Recall@N are used. N is the number of

recommended locations to a user, usually set to 5 and 10. Precision@N and Recall@N are
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defined as:

precision@N =

∑
ui∈U |TopN(ui)

⋂
L(ui)|∑

ui∈U |TopN(ui)|
(4.56)

recall@N =

∑
ui∈U |TopN(ui)

⋂
L(ui)|∑

ui∈U |L(ui)|
, (4.57)

where TopN(ui) contains top N locations recommended to ui. L(ui) contains locations

visited by ui.

As suggested in [102], the effectiveness of recommender systems with sparse datasets

(i.e., low-density user-item matrix) is usually not high in terms of Precision@N and Recal-

l@N. For example, the reported Precision@5 is 5% over a dataset with 8.02× 10−3 density

and 3.5% over a dataset with 4.24× 10−5 density [102, 104]. Thus, algorithms in comparison

usually compare the relative performance instead of absolute performance.

The root-mean-square error (RMSE) evaluates the difference between predicted val-

ues and observed values.

RMSE =

√∑
(i,j)∈C(r̂i,j − ri,j)2

|C| , (4.58)

where r̂i,j represents the predicted value, e.g., estimated check-in count of ui on lj, ri,j is

the observed value, e.g., observed check-in count. |C| is the size of testing data C.
RMSE is sensitive to the value scale [45]. It is commonly used in product recommen-

dation where the product rating has a fixed range, from 1 to 5. In location recommendation,

the check-in count could vary depending on specific users and locations. Thus, normalization

of values in check-in matrix is suggested before applying RMSE.

4.4 SUMMARY

Location recommendation, or POI recommendation, has been recognized as an essential

task of recommender systems for enriching human life experience. It was firstly studied on

GPS trajectory data. Due to the lack of mapping information between geo coordinates and

specific real-world POIs, a POI is usually determined by the stay points (geographical points

at which a user spent sufficient long time) extracted from hundreds of users’ GPS trajectory

logs [115, 117]. With the development of location-based social networking services, users

are able to check-in at real-world POIs and share such check-in with their friends through

mobile devices, resulting in spatial, temporal, social and content information to improve

location recommendation.

Location recommendation belongs to a sub-category of recommender systems. Thus,

techniques of general recommender systems can also be considered for location recom-

mendation with some performance loss. Location recommendation in LBSNs considers the
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specific human mobility patterns; the corresponding models can be classified into five cat-

egories: geographical influence, social correlations, temporal patterns, content indications,

and their hybrids. Table 4.9 summarizes the existing work based on the types of LBSN

information used.

Table 4.9: Summary of existing work of location recommendation in LBSNs. The “+” in a

cell indicates the corresponding type of information is used in an existing work.

Existing Geographical Social Temporal Content

Work Influence Correlations Patterns Indications

Ye et al. [103], Ye et al. [104],

Cheng et al. [13], Gao et

al. [28], Zhang et al. [112]

+ +

Gao et al. [25], Cheng et

al. [14]
+

Ye et al. [102], Long et

al. [64], Zhou et al. [118]
+

Yang et al. [100], Ying et

al.[107], Bao et al. [4], Hu et

al. [42]

+ +

Yuan et al. [108] + +

Cho et al. [17] + + +

Gao et al. [27], Gao et al. [26] + +

Liu et al. [62], Yin et al. [105] + +

Hu et al. [41], Liu et al. [61],

Liu et al. [63]
+

Noulas et al. [71], Chang et

al. [11]
+ + + +

Although most of the existing work studies more than two types of information, e.g.,

spatio-temporal, socio-spatial, spatial-content, etc., individual information are commonly

combined together through fused method, which restricts the understanding of their deep

relationships. In the future, it is possible to study more coherent relationships among multi-

ple types of information, such as the geo-social correlations. This also relies on the discovery

of anthropology and social theories of these relationships, which can be helpful for guiding

the relationship modeling.
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Epilogue

In mining human mobility on location-based social networks, location is an important fac-

tor which reflects human interactions with the physical world and is indicative of human

activities and lifestyles. As human mobility data surpasses traditional cellphone data in

terms of the amount of information it contains, the study of location-based social networks

has attracted increasing attentions in recent years. Location-based social networks contain

four “W” elements (“who”, “when”, “where”, and “why”), exhibiting various distinct da-

ta properties and mobility patterns. It provides a unique opportunity to analyze human

mobility from spatial, temporal, social, and content perspectives.

Centered on “location”, human mobility on location-based social networks are clas-

sified into two typical types of human behaviors: returning to a previous visited location,

or going to a new location. We have introduced the corresponding algorithms in Chapter 3

and Chapter 4, respectively. We discuss some additional topics related to these two human

mobile behaviors.

5.1 LOCATION PRIVACY

Location-based social networks are at the intersection of social media and location-based

services. Thus, standard social media mining techniques [109] are applicable to analyzing

certain aspects of location-based social networks, such as network measures and online

behavior analysis. LBSNs, however, provide a new type of information source - abundant

information containing the four “W” elements (when, where, who, and what) regarding

a user’s real-world and online behavior, and offer an unprecedented opportunity to study

human mobility and design advanced location-based services.

Compared with cellphone-based GPS data, LBSNs allow users to have more control of

their privacy disclosures, but whenever a user uses LBSN services, he inevitably trades his

privacy for convenience. By check-ins, a user can learn about location-specific information

including his nearby friends, but the user’s location is also shown publicly at the same time.

For example, repeated check-ins can reveal one’s home or office location [3]. The check-in

locations can also indicate personal preference, such as favorite food, regular daily activities,

or even health condition [113]. Thus, it results in a trade-off between privacy protection

and visibility/convenience.

LBSN services take two strategies to manage the user privacy. The first one comes

from the “user-driven” check-in property [24]. Different from GPS data that is passively
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recorded by mobile devices, a user on LBSNs can choose whether to check-in at a place or

not. Thus, if a user has serious privacy concerns when visiting a location, he could choose

not to check-in at that location. The second strategy is the privacy setting provided by the

service provider or third-party services. It allows a user to select the privacy management

options regarding which information he would like to keep private or otherwise.

The above privacy management strategies do not provide a user with the awareness

of potential perils on specific check-ins. For example, a user may not consider a big deal to

check-in at a restaurant. However, if the restaurant is far away from his home, it could be

“valuable” information attracting the attention of burglars1. While it is true that the only

way to ensure location privacy is not to check-in at any locations, people also deprive of

themselves the convenience provided by location-based services. How to achieve the ideal

balance between convenience and privacy is beyond the scope of this book.

5.2 LBSN DATA SUFFICIENCY & RELIABILITY

In the study of human mobility, information loss and information reliability become two

major concerns, which correspond to two fundamental issues:

• LBSN data sufficiency, and

• LBSN data reliability.

The check-ins on LBSNs are user-driven: a user usually checks-in at an interested

location rather than a regular location such as home or office. Thus, the missing check-in

problem can cause information loss, which makes the LBSN data an incomplete representa-

tive of the users’ mobile traces. However, LBSN data’s sufficiency depends on what task to

perform. In some tasks, incomplete data could still be sufficient to analyze human mobility.

For example, in POI recommendation where new POIs are recommended to a user, the

observation of the user’s visits at home and office does not add new informative for under-

standing his check-in preferences at new POIs. While in traffic forecasting, it is suggested

to obtain users’ mobile traces as complete as possible for predicting traffic.

The check-ins on LBSNs could be “faked” or manipulated by users. When using LBSN

services to check-in, a user can manipulate his check-ins by clicking the “check-in” button

on a POI without physically being there, such as checking-in at Disneyland while actually

sitting at home. There are two major reasons of such “fake” behavior. Some people are

for hire to perform fake check-ins and generate fake reviews; and some users may want to

earn additional credits through check-ins, which can turn into real-world benefit such as

coupons. LBSN services develop strategies to detect such check-ins by verifying a user’s

actual GPS position w.r.t. his check-in POI at the check-in time. Generally, LBSN data

are considered as a reliable information source for mining human mobility, while detecting

fake check-ins is still an ongoing challenge.

1http://www.huffingtonpost.com/2010/02/17/please-rob-me-site-tells_n_465966.html
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5.3 CONNECTING “VISITED LOCATIONS” AND “NEW

LOCATIONS”

According to the power-law distribution of check-ins, repetitive (i.e., previously visited)

check-ins and cold-start (or new) check-ins fare major forms of human mobility. In Chapter

3, we introduced location prediction to predict whether a user would return to a previously

visited location in his next check-in. This is to capture the human repetitive check-ins.

Algorithms in this category rely on the analysis of a user’s check-in history, including tasks

of predicting next visited locations and home locations. In Chapter 4, location recommen-

dation algorithms are discussed which recommend new locations to a user. Subsequently,

we introduce spatial, temporal, social and content-based models focusing on new locations.

However, it may not be straightforward to determine which category of algorithms

to apply, visited locations or new locations. Most of the time, a user’s check-in history

is a mixture of both types of locations. One solution is to firstly analyze a user’s check-

in intention (i.e., determine whether a user would like to go to a visited location or new

location in his next check-in), and then apply corresponding prediction or recommendation

algorithms. NSM (a Novelty Seeking Model) is such an algorithm for intention analysis [111].

It considers a user’s intention of exploring new locations during checking-in as “novelty-

seeking trait”, and analyze it with a consideration of two aspects: self novelty, i.e., personal

desire for exploring, and crowd novelty, i.e., noncompliance with majority behavior.

Another algorithm, CEPR (a Collaborative Exploration and Periodically Returning

model) [56] further extends NSM with the consideration of how many opportunities left a

user can explore new locations regarding the current status (e.g., current time and location).

It applies kernel smoothing techniques on time distribution at a given location to model

human mobile regularity, and leverage a Markov model for prediction.

The main drawback of “Novelty Seeking” algorithms comes from its two-step predic-

tion framework. The incorrect prediction of “novelty-seeking trait” in the first step could

certainly result in a failure in the second step of prediction/recommendation. It is a still

burgeoning area with many novel approaches that are constantly proposed.

5.4 FUTURE DIRECTIONS

Many extensions and work can be further explored. We present some future directions next,

hoping to stimulate further discussion and research:

• Temporal-based Content Analysis

Content information has been proven to be useful for mining human mobility patterns.

By investigating sentiment and topics embedded in content information, one can infer

a user’s check-in interests and perform better prediction/recommendation. However,

a user’s interests may change over the time. A user may not have much seafood before

but loves it now due to certain reasons, say, relocation. Such change can be reflected



through his check-in content over a certain period of time. Therefore, temporal-based

content analysis could help capture the change of check-in interests and provide the

up-to-date indications on human mobility.

• Anomaly Detection When using location-based social networking services, a user

can “pretend” to check-in at one location while physically at another location. As

discussed in Section 5.2, users make fake check-ins due to several reasons, such as

earning check-in rewards for coupons or free gifts, or being hired to generate positive

tips/reviews to gain stellar reputation in a short time. In addition, there are also

spam tips containing Phishing links or unsolicited advertisements [1]. Detecting these

anomalies not only can improve user’s check-in experience, but also can better capture

user interests and venue profiles for designing more advanced location-based services.

• Tensor-Based POI Recommender Systems

Temporal information is highly integrated in human mobility, which makes it natural

to organize it with other types of information as a tensor. For example, check-in

actions can be represented by a tensor with respect to its geographical (longitude

and latitude) and temporal dimensions. Thus, tensor-based approaches can be used

to study user preferences, which is more compact and intuitive. Furthermore, tensor-

based approaches consider different information together, providing an opportunity to

study their relationships and complementary effect for personalize mobile applications.

• Location-Based Mobile Applications

Mining human mobility patterns has been an important topic in academic in recent

years. As an integral part of human activities, it exhibits great potential for mobile

products. Location-based social networking services such as Foursquare and Yelp have

already started to analyze users’ mobility and perform location recommendation to

improve user experience. We expect to see more mobile applications in the next decade

which can revolutionarily change ways in facilitating users’ daily activities.
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