

Mobile Location Prediction in Spatio-Temporal Context

Huiji Gao, Jiliang Tang, Huan Liu

Data Mining and Machine Learning Lab Arizona State University June 18, 2012

Data Mining and Machine Learning Lab

Mobile Location Prediction

- Applications:
- Mobile Advertising
- Traffic Planning
- User oriented coupon dispersion
- Disaster Relief
- Challenges:
 - **Over-fitting** Long spatial-temporal trajectories with massive n-gram spatial patterns and sparse temporal patterns, smoothing techniques are indispensable.
- Integration Seek a good way to integrate both spatial information and temporal information.

Problem Statement

Given a user with a series of his historical visits in a previous time section, and a context of the latest visit location with the time of the next visit, the location prediction problem in Nokia Mobile Data Challenge can be described as finding the probability of

$$p(v_i = l \mid t_i = t, v_{i-1} = l_k)$$

Where

 $v_i = l$: the i-th visit at location I;

 $t_i = t$: the i-th visit happens at time t;

set as the "ending time of current visit"

 $v_{i-1} = l_k$: the (i-1)-th visit happened at location l_k .

Problem Statement

Using Bayes' rule,

$$p(v_{i} = l | t_{i} = t, v_{i-1} = l_{k})$$

$$= \frac{p(v_{i} = l, t_{i} = t | v_{i-1} = l_{k})}{p(t_{i} = t)}$$

$$\propto p(v_{i} = l, t_{i} = t | v_{i-1} = l_{k})$$

$$= p(t_{i} = t | v_{i} = l, v_{i-1} = l_{k})p(v_{i} = l | v_{i-1} = l_{k})$$

$$= p(t_{i} = t | v_{i} = l)p(v_{i} = l | v_{i-1} = l_{k})$$

$$= p(t_{i} = t | v_{i} = l, v_{i-1} = l_{k}) = p(t_{i} = t | v_{i} = l)$$

Consider $p(t_i = t | v_i = l, v_{i-1} = l_k) = p(t_i = t | v_i = l)$ under the assumption that the probability of current visit time is only relevant to the current visit location.

Problem Statement

$$p(v_{i} = l | t_{i} = t, v_{i-1} = l_{k})$$

= $p(t_{i} = t | v_{i} = l) p(v_{i} = l | v_{i-1} = l_{k})$

Temporal Constraint

Spatial Prior

The probability of the i-th visit happening at time t, observing that the i-th visit location is l.

The probability of next visit at location I given the current visit at I_k

Spatial Prior

- **Two properties of spatial prior** $p(v_i = l | v_{i-1} = l_k)$
- Power Law Distribution
- People tend to go to few places many times, and many places few times.
- Short Term Effect
- The current visit location is more relevant to the latest visit than the older visit. Correspondences between language and LBSN modeling

Language Modeling		LBSN Modeling		
Corpus		Check-in collection		
Document		Individual check-ins		
	Paragraph		Monthly check-in sequence	
Document	Sentence	Check-in	Weekly check-in sequence	
Structure	Phrase	Structure	Daily check-in sequence	
	Word		Check-in location	

[Gao et al. Exploring Social-Historcal Ties on Location-Based Social Networks. ICWSM 2012]

Spatial Prior

✤ Hierarchical Pitman-Yor (HPY) Language Model to generate the spatial prior $p(v_i = l | v_{i-1} = l_k)$ (HPY spatial prior) > Generate the probability of next location based on an

observation of historical visiting sequence.

- Consider a combination of all the n-gram patterns in the previous visits with various pattern weights.
- > The latest visit has higher weight than the older visit.

[Gao et al. Exploring Social-Historcal Ties on Location-Based Social Networks. ICWSM 2012]

E - CEFE

Temporal Constraint:

TIT TO RA

$$p(t_i = t | v_i = l)$$

$$= p(h_i = h, d_i = d | v_i = l)$$

$$= p(h_i = h | v_i = l) p(d_i = d | v_i = l)$$
Hourly Constraint
$$Daily Constraint$$
h: Hour of the day, i.e., 10:00am, 3:00pm
d: Day of the week, i.e., Monday, Sunday

Compute $p(h_i = h | v_i = l)$ and $p(d_i = d | v_i = l)$

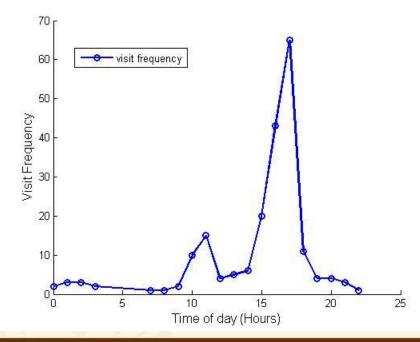
> For a visit location I that has happened at h (d) in the previous visits, it's easy to get $p(h_i = h | v_i = l)$ and $p(d_i = d | v_i = l)$

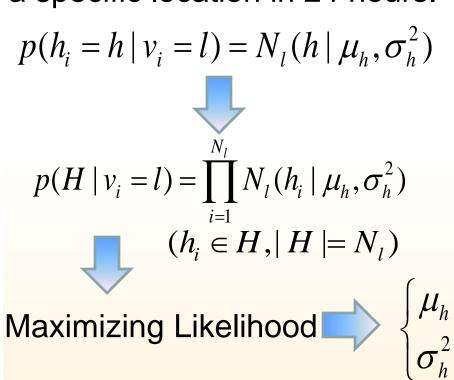
For a visit location I that has not happened at h (d) in the previous visits (majority part in the training set),

how to compute?

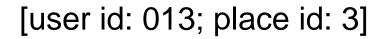
Compute $p(h_i = h | v_i = l)$ and $p(d_i = d | v_i = l)$

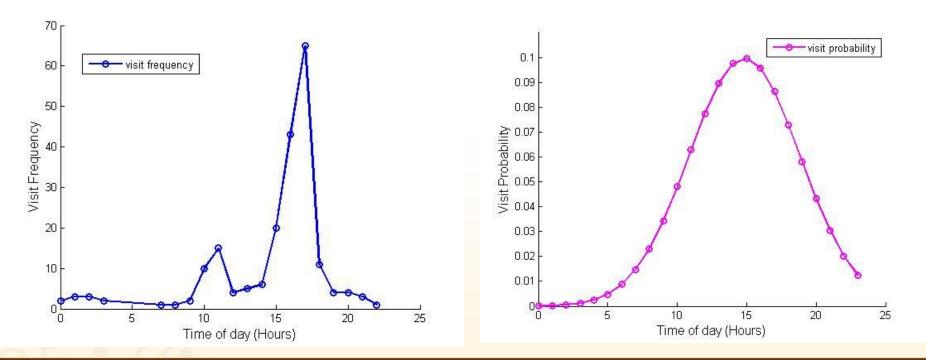
> Distribution of a user's visits at a specific location in 24 hours. (user id: 013; place id: 3) $p(h - h|y - l) - N(h|y - \sigma^2)$





Curve Fitting:





Location Prediction

5 19

Probability of visiting location I at time t with the latest visit at Ik

$$p(v_{i} = l | t_{i} = t, v_{i-1} = l_{k})$$

$$= p(v_{i} = l | v_{i-1} = l_{k})p(h_{i} = h | v_{i} = l)p(d_{i} = d | v_{i} = l)$$

$$= p(v_{i} = l | v_{i-1} = l_{k})N_{l}(h | \mu_{h}, \sigma_{h}^{2})N_{l}(d | \mu_{d}, \sigma_{d}^{2})$$

$$HPY Prior Gaussian Gaussian$$

$$HPY Prior Hour-Day Model (HPHD)$$

Experiment Setting
For Submission:
Training set: Set A
Testing set: Set C (no ground truth)
Number of users: 80

For Evaluation

Divide set A into training and testing parts.

Testing set: Toy data provided by Nokia with 3373 unknown locations.

Training set: For each user, all the visits in set A that happened before the visits in testing set.

- - Baseline Methods (Spatial Family)
 - 1. Most Frequent Visit Model (MFV) Consider the most frequent visited location
 - Order-1 Markov Model (OMM) Consider the most frequent two-gram pattern with the latest visit as context.
 - 3. Fallback Markov Model A combination of MFV and OMM
 - 4. HPY Prior Model (HP) Consider the HPY prior only to predict the next location.

- Baseline Methods (Temporal Family)
- Most Frequent Hourly Model (MFH) Predict the next visit at time h as the most frequent visit location at h in previous visits.

- Most Frequent Daily Model (MFD) Predict the next visit at time d as the most frequent visit location at d in previous visits.
- 7. Most Frequent Hour-Day Model (MFHD) A combination of MFH and MFD (by mutiplying)

Baseline Methods (Spatio-Temporal family)

- 8. HPY Prior Hourly Model (HPH) Consider the HPY prior and hourly information.
- 9. HPY Prior Daily Model (HPD) Consider the HPY Prior and daily information.
- Proposed Method (Spatio-Temporal family) HPY Prior Hour-Day Model (HPHD) Consider the HPY prior, hourly information, and daily information.

5

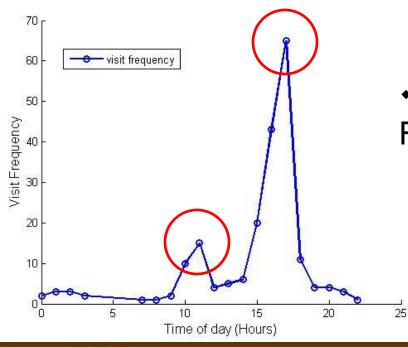
Table 1: Location Prediction Results

	Models	Correct No.	Accuracy
	MFV	1148	0.3402
Spatial-based	OMM	1466	0.4345
Spanal-Dased	FMM	1583	0.4692
	HP	1610	0.4772
	MFH	1462	0.4333
Temporal-based	MFD	1156	0.3426
	MFHD	1538	0.4558
	HPH	1680	0.4979
Spatio-temporal	HPD	1583	0.4692
	HPHD	1705	0.5053

Conclusions and Future Work

Gaussian Distribution with Two Peaks
 An alternative version of HPHD. (AHPHD)
 Not stable consitiute to peak detection

> Not stable, sensitive to peak detection.



Five Submissions FHD, HP, HPH, HPHD, AHPHD

Acknowledgements

This work is supported, in part, by ONR (N000141010091).

All the data used in this work is provided by Nokia Mobile Data Challenge.

Questions?

