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ABSTRACT
At LinkedIn, users rely on meaningful search queries to find specific
jobs, qualified candidates, and much more. When a user lacks broad
knowledge of industry jargon, we can assist them by suggesting
alternate but related queries. To learn these, we can learn from
past actions of different users which query reformulations were
successful. We can also learn directly by analyzing which suggested
queries were clicked. In this paper, we propose a novel method for
incorporating both user reformulation data and user suggestion
click data to train a deep sequence to sequence model for query
generation. Our method involves adding a ranking loss term to the
standard log likelihood loss of machine translation. Compared to
several alternate approaches for joining the two datasets together,
our method significantly outperforms the control model both offline
and with respect to key business metrics.
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1 INTRODUCTION
Searching within a site like LinkedIn is different than a general web
search. The domain is for a specific application, namely finding
jobs, people, or industry news. Industry veterans will have more
knowledge of key terms and better phrasings that will lead them
to their desired results. Novice job seekers may not know the right
terminology to find what they want. This is where query suggestion
comes in [3, 7].

With query suggestion, we can provide the user with potentially
related searches. In Figure 1, we show a typical search at LinkedIn,
where suggested queries are listed at the bottom of the page. Users
can click on the suggested queries to issue a new search. We can
offer suggestions that could guide them to make the most of the
search experience. The current state of the art approach is to treat
query suggestion as a machine translation problem, and solve it
with sequence to sequence modeling [6, 15].
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Figure 1: The "Related Search" product on LinkedIn mobile.
Given a query "deep learning", the suggested queries are "ma-
chine learning", "computer vision", etc.

The primary source of training data for this task is search
logs [10]. We denote this as reformulation data. Search logs are
mined for instances where a user made an initial unsuccessful
search, changed their search slightly, and then performed a suc-
cessful search soon afterwards. This can be combined with other
heuristics, such as requiring words in common between the query
pairs, or requiring aminimumnumber of users to also have searched
for the same pairs. Once the model is trained and deployed online,
we can see which queries were chosen, if any. We denote this data
as user feedback data. The focus of this paper is in using both of
these sources of data.

The query reformulation data is valuable as it provides human
generated examples of real queries that were rewritten and turned
into successful searches. For example, a user may have searched for
“relevance programmer", and found few job postings, then searched
for "ai engineer" and clicked on a result. User feedback data, on the
other hand, can tell us whether a suggested query catches the user’s
attention. For example, “ethical ai" and “500k ai engineer" may be
chosen over “ai engineer intern". However, the second option may
not return results. This motivates us to combine the two sources of
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data and produce a model that provides both useful and attractive
suggestions.

We can treat the clicked query pairs from the feedback data as
additional machine translation data. However, this misses a key
observation: user feedback is a different kind of data. The users
did not type them in from scratch; instead, they simply selected
them from a list. This is not the same as knowing gold standard
suggestions. Instead of inserting them into the training data, a
more principled approach would be to give this dataset an entirely
different interpretation: clicked versus unclicked labels in our data
induce a basic ranking on the suggestions. The clicked suggestion
is the better one, and it should receive a higher likelihood score
than the others.

Using this intuition, we build a model training procedure that
simultaneously trains with the reformulation data with the standard
log-likelihood loss, and adds a penalty term for the user feedback
data to guide the model into ranking clicked suggestions higher
than non-clicked ones. We test this method against several simpler
methods: (1) using only reformulation data, (2) using only clicked
pairs, (3) model fine-tuning on clicked pairs, and (4) combining the
reformulation and clicked pairs into a single dataset.

The advantages of our method are as follows:

• It is a straightforward and powerful way to incorporates both
human generated examples and feedback data in sequence
to sequence modeling. In many web applications, both data
types are available, thus there are many possible applications
of this work.

• This method naturally provides a way to insert "negative
examples" (i.e. poor quality suggestions) to train a robust
model.

• This method is easy to deploy in production. Compared to
previous work that explicitly incorporates query history[11],
it does not change the underlying architecture of the seq2seq
model, only the training procedure. Consequently, the model
latency and the online infrastructure are unchanged relative
to the baseline.

2 RELATEDWORK
Query suggestion with machine translation [13], and specifically
sequence to sequence modeling, has been successfully deployed in
industry [8]. The neural machine translation approach is highly
customizable and can easily incorporate many more features, such
as search session data [6, 15].

Click Feedback Aware Networks for query suggestion [11] use
feedback data in providing high quality query suggestions. CFAN
is a ranking model for a separate generation pipeline. Using query
session information, it builds a hierarchical, siamese network. Our
model, on the other hand, acts directly on the sequence to sequence
framework, and does not use any session information during infer-
ence. It does generation and ranking in the same model.

Within machine translation, the subproblem of domain adap-
tation focuses on the of use two separate datasets: an in-domain
corpus, and a larger out-of-domain corpus, with the goal of produc-
ing a functioning domain-specific MT system. We highlight two
main approaches. The first approach is to combine the in-domain

and out-of-domain data into a single corpus [5]. Since the out-of-
domain corpus is larger, the machine translation system will be
biased towards it. Typically, biases manifest as the system prefer-
ring interpretations from the out-of-domain corpus whenever there
is overlap. The second approach is fine-tuning the model [12, 14]:
first, train on the general domain; then, continue training for some a
smaller number of epochs on the specialized domain. This approach
emphasizes the in-domain corpus by focusing on it exclusively in
the second phase. However, after finetuning, too much knowledge
of the original domain can be lost, and advanced approaches can
be used to mitigate catastrophic forgetting [17].

All of the above methods work on the assumption that the prob-
lem formulation is the same between different datasets. In our set-
ting, however, the user feedback data is not simply more machine
translation sentence pairs. It is user preference data on machine
generated pairs. In this work, we propose a model format with two
separate loss terms for each dataset to handle these separate data
types.

3 APPROACH
Given a source query s = s1, . . . , sm consisting of a series of tokens,
the goal is to directly translate these tokens into a query suggestion
t = t1, . . . , tn . Our goal is to find a probability function p(t |s,Θ),
where Θ are model parameters, that is maximal on useful query
suggestions.

3.1 Sequence to Sequence Modeling
Using the sequence to sequence modeling framework [16] (seq2seq),
we can produce a target sequence t of any length from a source
sequence s . In seq2seq, models have an encoder and decoder. The
encoder, typically an RNN [9, 19] or Transformer [18], takes the
input sequence and produces a fixed dimensional vector h0 and a
vector for each input token, collectively denoted e. The decoder
is a function intended to represent the i-th target word, given all
previous target words, and the entire source sentence, using an
intermediate hidden state hi :

p(ti |ti−1, . . . , t0, s0, s1, . . . , sm ) := p(ti |hi , e;Θ)

The decoder is another RNN/Transformer network, coupled with
a softmax layer on each hi with attention [1]. If L = L(t) is the
number of words in t , then the log probability of an entire sentence
is the sum over log probabilities for each word in the sentence:

logp(t |s) =
L(t )∑
i=0

logpw (ti |ti−1, . . . , t0; s) (1)

3.2 User Feedback Seq2Seq Model
To use both datasets to train our model, we keep the same negative
log likelihood loss term for our reformulation data, but we add a
separate term for the feedback data. We start with the simple desire
that clicked query suggestions should score higher than non-clicked
ones. In our case, the scores are given by Equation 1. We add a new
term to the loss term, which is similar to the pairwise loss[2, 4]:

Lp = −(log(tp |sf ) − log(tn |sf )) (2)
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where ⟨sf , tp , tn⟩ is a triple from the feedback data, whichwe denote
C , consisting of a source query, a clicked query, and an unclicked
query, respectively. For our full loss function, we let ⟨s, t⟩ ∈ R be
source and target queries from the reformulation data R. We add to
equation 2 three parts: (1) amax switch that can disable the penalty,
if the positive query is already better; (2) a margin parameter ϵ ,
which determines how much slack we allow before penalty occurs;
and (3) a relative weight λ which controls the strength of refor-
mulation vs feedback data contribution to the loss. Putting it all
together, we have

L =
∑

⟨s ,t ⟩∈R

− logp(t |s)+

λ
∑

⟨sf ,tp ,tn ⟩∈C

max(0, logp(tn |sf ) − log(tp |sf ) + ϵ)

In other words, within a batch, our loss is the total cross entropy
between our expectation and prediction, plus a weighted penalty
proportional to how much an unclicked example outperforms a
clicked one. If the positive example outscores the negative by at
least a certain margin ϵ , then no penalty is incurred.

3.3 Robustness via Data Augmentation
This formulation easily allows us to augment our data with negative
samples. If we know that the model wrongly promotes certain
results, such as ungrammatical, fragmented, or repetitive queries,
we can insert these as non clicked queries to teach the model to
avoid these patterns. Indeed, we have noticed our baseline models
sometimes tend to output fragmented queries (for example, queries
ending with ‘and’), or repeating somewords (e.g. ‘software engineer
and software’). We also experiment with data augmentation in this
work. To generate poor examples, we used the following simple
algorithm. For a given source query, we generate a ‘bad’ query by
appending on to the source query one of the following at random:

(1) Any random word from the source. E.g. “remote software
engineer" becomes “remote software engineer remote"

(2) Any random joiner word from ‘and’, ‘in’, ‘the’, ‘of’, ‘or’. E.g.
“software engineer" becomes "software engineer in"

(3) Any random joiner plus a word from the source, e.g. “soft-
ware engineer", becomes “software engineer and software"

For each example ⟨sf , tp , tn⟩ in the feedback data, we add
⟨sf , tp , tbad⟩ to the data with probability pbad. This ad-hoc data
augmentation technique is merely one possible way of creating
negative samples, but it proves useful in our experiments (see Sec-
tion 4.1.4).

4 EXPERIMENTS
In this section we describe our experimental setup. We perform
offline experiments to demonstrate the model’s performance in
optimizing metrics against both reformulation data and feedback
data. Afterwards, we perform online experiments to verify our
offline metrics correspond to measurable value for users.

Table 1: Offline Perplexities on Reformulation Data and
MRR@6 on feedback data, Different Model Types

Model Perplexity MRR click

Reformulation only (baseline) 13.44 () 0.5536
Feedback data only 86.79 (76.29, 99.66) 0.6128
Reformulation train + finetune click 23.94 (21.97, 26.12) 0.5947
Combined data reformulation + click 13.21 (12.40,14.07) 0.5760
Seq2Seq Click λ = 0.75 augmented 13.41 (12.62,14.30) 0.5945

4.1 Offline Experiments
4.1.1 Datasets. Our reformulation query pairs are collected over
a one years period of data and consist of 180 million query pairs
for training, and 2,000 query pairs for each of the validation and
test sets1. Our click examples are collected over a 6 month period,
and are filtered by suggestions that resulted in at least one click.
The final count is approximately 17.8 million queries, each with
approximately 6 suggestions, at least one of which is clicked. This
yields 107 million total feedback triples ⟨sf , tp , tn⟩ for our model.
Our feedback test set contains 20,000 searches, each containing 5-6
suggestions with at least one clicked.

4.1.2 Architecture. For all experiments, we maintain the same ar-
chitecture. We use an LSTM [9] based seq2seqs model with atten-
tion [12]. We use a 100-hidden dimension, 2-layer network with a
60K vocabulary. We train with SGD, learning rate 1.0, for 2 epochs
(only 2 since our data is quite large), then begin decaying by 1

2 ten
times over the final 2 epochs.

4.1.3 Variants and Offline Metrics. We evaluate several different
baselines for incorporating user feedback into query suggestions.
The first four models are trained on query pairs under seq2seq
framework (equation 1).

(1) Reformulation only. This is our baseline model, and it is
trained only on query reformulation data ⟨s, t⟩ ∈ R.

(2) feedback data only. This model is trained only on clicked
suggested queries ⟨sf , tp ⟩ ∈ C .

(3) Reformulation train + Finetune Click. The model is ini-
tialized to our control model, then fine-tuned it for one addi-
tional epoch on the clicked suggested queries only.

(4) Mixed reformulation + click. This model added the
clicked queries directly into the reformulation training data
to train a new model.

(5) Seq2Seq Click. This is our proposed penalty model evalu-
ated against the same metrics.

We measure (1) perplexity on the reformulation data test set, and
(2) mean reciprocal rank (MRR) on the user feedback test set.

Separately, we also evaluate our proposed method with several of
its parameters varied, in order to choose the best parameter settings
to choose for comparison. For all data augmentation experiments,
we use pbad = 1/3 (Section 3.3) to yield a final feedback data size of
approximately 150M examples.

4.1.4 Results and analysis. Our offline results are presented in two
tables. In Table 2, we tweak various parameters of our click model
to arrive at our highest performing model. We found that ϵ > 0
1Test and validation sets consisting of only a few thousand examples are common in
machine translation settings, see http://statmt.org/wmt19
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Table 2: Offline Perplexities on Reformulation Data and
MRR@6 on feedback data, Different Parameters of Seq2Seq
Click Model

Model Perplexity MRR click

Seq2Seq Click λ = 0.5 13.62 0.5896
Seq2Seq Click λ = 0.5, ϵ = 0.25 13.57 0.5861
Seq2Seq Click λ = 0.5, ϵ = 0.5 13.58 0.5815
Seq2Seq Click λ = 0.75 13.60 0.5918
Seq2Seq Click λ = 0.75, ϵ = 0.05 augmented 13.56 0.5912
Seq2Seq Click λ = 0.75 augmented 13.41 0.5945
Seq2Seq Click λ = 1 augmented 13.57 0.5955

Table 3: Online improvement observed relative to the base-
line (control). Bold indicates statistically significant at
p<0.01

Model Suggestion CTR Search CTR

Reformulation only (baseline) - -
Click-only +10.26% +0.17%
Fine-tune +11.50% +0.23%
Click λ = 0.75 aug +5.14% +0.48%

seemed to hurt performance. For λ, we tried 0.5, 0.75, and 1.0, and
settled on a value of 0.75.

In Table 1, we evaluate our best performingmodel against several
alternatives. The goal of the baseline model is to minimize perplex-
ity of the reformulation dataset, therefore, we expect it to have the
lowest perplexity. However, combining the data without duplication
gave a slightly lower perplexity, perhaps by focusing the model on
its best outputs. The feedback data only model achieves the highest
MRR. However, not surprisingly, its perplexity on reformulation
data is an order of magnitude worse (86.79 ppl in Table 1 versus
mid 13’s for the better models). As expected, the baseline and click
only models perform very well on their individual metrics, but not
on both.

The finetuned model uses both sources of data, though it nearly
doubles perplexity (from 13.21 to 23.94). Mixed reformulation + click
achieves the best perplexity, and outperforms the baseline on MRR,
but falls short of the fine-tuning and feedback data only models.
Finally, we see that User Feedback Seq2Seq with augmented nega-
tive samples, can close the gap completely with the baseline and
finetuned models (within 0.03 ppl and 0.0002 MRR, respectively).

Optimizing for two objectives allows room for qualitative as-
sessment; our model is not the best on either metric, but can be
qualitatively considered the “best overall". Instead of introducing an
ad-hoc metric based on weighted sums of the perplexity and MRR,
we defer to the next section, where we make this claim concrete
with the results of online experiments.

4.2 Online Experiments
We deployed the baseline model, finetuned model, click-only, and
the new seq2seq-click λ = 0.75 augmented model to a randomly
sampled 10% of LinkedIn traffic for two weeks. In Table 3, we report
performance relative to our control (Reformulation only) model.
We display two online metrics: Suggestion CTR, which measures
the click-through rate on suggested queries only, and Search CTR,

which measures CTR@5 on documents (e.g. jobs and people pro-
files) shown to users site-wide. The second is a holistic measure of
the general user experience regarding the whole search system at
LinkedIn. Providing better suggested queries can improve on search
CTR if the suggestions ultimately guide the user towards what they
want. The feedback data only and finetune models generate signifi-
cantly higher amounts of user clicks on suggested queries, but are
not significantly useful to improving user experiences. Seq2Seq-
Click fares better. Its 0.48% lift is significant (p < 0.01), despite its
suggestion CTR even while its lift is 5% instead of 10+%. It is inter-
esting to note the interpretation of the two data sources. Optimizing
MRR over feedback data leads directly to a boost in suggestion CTR.
Optimizing the perplexity of the query reformulation leads to pre-
dicting queries that users find useful. Therefore, optimizing both
leads to prioritizing queries that are both useful and likely to be
clicked.

5 CONCLUSION
In this paper, we have proposed a new method for jointly training
a query suggestion seq2seq model on both reformulation data and
user feedback. By measuring online performance, we see that this
enables us to offer suggestions that are both interesting and useful.

We have focused on query suggestion. In this task, a user’s
click cannot be treated as the “right" or “only" suggestion. With
respect to query length, there are exponentially many possibilities
for suggestions, and only a few are evaluated. Because of this, the
pairwise penalty is a natural addition to our loss function. Looking
beyond, this framework of loss plus pairwise rank term can be
applied anywhere one has access to ground truth labels and user
preferences on machine generated results.
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