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ABSTRACT
The increasing availability of participatory web and social
media presents enormous opportunities to study human rela-
tions and collective behaviors. Many applications involving
decision making want to obtain certain generalized proper-
ties about the population in a network, such as the propor-
tion of actors given a category, instead of the category of
individuals. While data mining and machine learning re-
searchers have developed many methods for link-based clas-
sification or relational learning, most are optimized to clas-
sify individual nodes in a network. In order to accurately
estimate the prevalence of one class in a network, some quan-
tification method has to be used. In this work, two kinds
of approaches are presented: quantification based on classi-
fication or quantification based on link analysis. Extensive
experiments are conducted on several representative network
data, with interesting findings reported concerning efficacy
and robustness of different quantification methods, provid-
ing insights to further quantify the ebb and flow of online
collective behaviors at macro-level.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data Mining ; H.4.2 [Information Systems Applications]:
Decision Support

General Terms
Algorithm, Experimentation

Keywords
Network Quantification, Prevalence Estimation, Classification-
Based Quantification, Link-Based Quantification, Graph Min-
ing

1. INTRODUCTION
In many applications and domains, it is the aggregated mass,
or in other words, the prevalence of one class, that plays a
key role in decision making. Here are some examples:

• In the US presidential election, the candidate who wins
a plurality of individual votes in a state wins the state
vote.

• A senator might need to collect the mass opinion and
prioritize requests based on the urgency and the num-
ber of requests [18].

• An accurate estimation of the prevalence of influenza
incidents in certain area can help the authority to allo-
cate attentions, money and resources accordingly [12].

• Companies may want to estimate the proportion of
positive or negative responses from customers to take
corresponding strategic actions toward a new-generation
product.

All the example above share one common characteristic: it
is the aggregated mass of certain properties that matters.

The problem of accurately estimating the prevalence of one
class in samples is referred as quantification [5]. It has been
studied in various domains. For example, in the medical
statistics field, Zhou et al. estimate the prevalence of a dis-
ease in a test population with an imperfect binary diagnos-
tic test with known sensitivity and specificity [24]; Sociolo-
gists perform content analysis of blog posts to examine the
support with respect to two different candidates [10]; For-
man compares various strategies of quantification, aiming
at quantifying the counts and costs of different classes in
HP customer calls [5] so that HP can allocate human re-
sources accordingly. Quantification is also applied to help
semi-supervised learning when labeled samples and unla-
beled samples follow different class distributions [23].

Quantification calls for attention because 1) The basic as-
sumption of training and test sharing the same distribution
as the foundation in many machine learning techniques are
not necessarily true in reality; 2) Many classifiers are opti-
mized for individual predictions. It might induce biases in
quantification, especially when the class are imbalanced and
insufficient; 3) The accuracy of classifiers can be highly de-
pendent on the availability of training samples, which often
involves tremendous human efforts. However, the prevalence
might be estimated precisely even with few labeled samples
if a robust quantification method is exploited.

All the aforementioned studies focus on quantification when
data are presented in conventional attribute format. But in



many situations, the data are presented in a relational net-
work, such as the citations among papers, the transportation
network and financial transactions between different enti-
ties. Recently, with the expanded use of web and social
media, oceans of user interaction data are produced in net-
work format. This flood of network data provides valuable
opportunities to study collective behavior such as the politi-
cal views of users, the happiness of people, the opinions and
sentiments of online users, the likelihood of product sales
online, etc. Essentially, networks offers a new type of infor-
mation source.

With abundant information provided online, we aim to quan-
tify the collective behavior, i.e., the number of users that are
involved in certain type of activities, preferences, or behav-
iors. Generally, both attribute data (e.g., user tweets, status
updates, blog posts, tags, shared content) and network data
(e.g., user interaction, friendship network, following/follower
network) are available. Ultimately, we hope to exploit both
kinds of information collected from social media to quantify
the prevalence of users of certain classes.

However, network data are different from conventional at-
tribute data that has been well studied in traditional data
mining. When data instances are connected in a network,
they are not independently identically distributed, hence col-
lective inference is commonly used for prediction [15]. It is
not clear how the collective inference process would affect
the final quantification performance, which, in part, moti-
vates us to develop this piece of work. For another, it is
not surprising to have a network with millions of entities.
Existing quantification methods rely on classification thus
collective inference, which can be too computational expen-
sive for practical use. It is demanding to develop efficient
quantification methods for large-scale networks.

As an initial attempt, we concentrate on prevalence esti-
mation with network data in this work. We first formally
define the network quantification problem and emphasize its
difference from conventional classification. Higher classifica-
tion accuracy does not necessarily lead to better prevalence
estimation. In section 3, we review existing quantification
methods based on classification and discuss how it can mi-
grate to handle network data. Since collective inference can
be time consuming, we propose a simple link-based quantifi-
cation method which does not require individual predictions,
thus eliminating the collective inference procedure. We con-
duct comprehensive comparison and report empirical results
on several benchmark network data sets in section 5, with
concluding remarks and future work in Section 6.

2. NETWORK QUANTIFICATION
The expanded availability of web and social media has lead
to the flourish of network data. The kind of interaction can
provide valuable information to study collective behavior.
Suppose the behavior can be captured by certain classes
such as whether a user supports a certain political view,
whether one likes one product, whether he would like to
vote for a presidential candidate, etc. The categories can
also be generalized to properties such as locations, prefer-
ences or sentiments of online users, and other attributes of
entities in a network. In the simplest case, we consider bi-
nary classes (i.e., {+,−}) in this work, as most problems

(a) (b) (c)

Figure 1: Shaded nodes are the ones with known
labels while others are unknown. The nodes in red
dashed outline denote the misclassified ones. (a) the
ground truth of classes associated with each node in
the network, p(+) = 5/8; (b) accuracy = 2/3, p̃(+) =
4/8, |p̃(+)− p(+)| = 1/8; (c) accuracy = 1/3, p̃(+) = 5/8,
|p̃(+)− p(+)| = 0.

of multiple classes or multiple labels can often be converted
into multiple binary classification problems.

Network Quantification is to estimate the prevalence of one
class in a network. Without loss of generality, we always
aim to compute the prevalence of the positive class. In par-
ticular, the problem is defined as follows:

Given: a network N(V, E) where V is the vertex
set, E is the edge set; known class values y` ∈
{+,−}` of certain nodes V ` in the network;
Output: the proportion p̃(+) of nodes belonging
to the positive class in the network.

One natural straightforward solution is sampling. That is,
we count the number of positive and negative instances in
y` and compute the proportion directly. However, this relies
on the assumption that the labeled nodes are representative
of the whole population. In this work, we do not hinge on a
carefully-designed sampling procedure, but allow the labeled
nodes following a different distribution from the whole pop-
ulation. That is, the available labels are biased. Because 1)
the labeling process might introduce biases in the available
samples. Depending on the labeling procedure, different bi-
ases might be inserted into the labeled samples. For exam-
ple, suppose the classes are about the sentiment of actors
in a network and they are self-reported. For many users,
the class information might be missing. Happy user may be
more likely to share their mood online. 2) Networks often
grow and evolve. For instance in social media, each day we
have new users joining a network and new connections oc-
curring between existing ones. It is impractical or impossible
to always keep the labeled samples mirroring the whole net-
work. Hence, we remove the strict assumption that labeled
samples follow the same distribution as the whole network.
In our setup, labeled samples are treated as obtained from
a black box. They are biased and not guaranteed to follow
the same class distribution as the whole population.

An alternative approach is to exploit the label information
to construct a classifier, predict the labels of those unla-
beled ones and count the proportion (which is denoted as



Given: network N(V, E);
labels y` of some nodes;
maximum number of hops kmax;

Output: the prevalence of the positive class p̃(+).

Build relational classifier based on N and y`;
Perform collective inference to obtain prediction score yu;
CC: p̂(+) = 1

|V | |y > 0|.
AC: perform cross validation on y` to estimate tpr and fpr;

estimate p̂(+) following Eq. (3).
for threshold t = min{y}, · · · , max{y}

estimate p̂t(+) following AC;
end
T50: p̂(+) is estimated as p̂t(+) when tpr − fpr = 50%.
MS: discard invalid p̂t(+);

output p̂(+) the median of valid {p̂t(+)}.

Figure 2: Classification-based Quantification

Classify & Count (CC) in [5]) . We emphasize that classi-
fication and quantification are two different, though highly
correlated tasks. Existing within-network classification or
relational learning techniques are optimized for individual
predictions. The prediction performance is not necessarily
correlated with network quantification accuracy. Figure 2
shows a toy example. Figure 1a shows the problem setup.
We are given a network of 8 nodes. The shaded ones are
those whose class values are known. Two instances of predic-
tions are shown in Figures 1b and 1c, respectively, where the
red nodes are misclassified. Evidently, the former one in Fig-
ure 1b, though predicts more accurately, produces higher the
quantification error (1/8 deviation from the ground truth).
On the contrary, in the latter case, 2/3 of test data are mis-
classified but the quantification error is 0 as those misclas-
sified ones happen to cancel out. Thus, in order to quantify
the prevalence of classes accurately, we have to employ tech-
niques that are designed for accurate quantification.

3. QUANTIFICATION BASED ON CLASSI-
FICATION

A common practice in quantification is to rely on an imper-
fect classifier to estimate the class prevalence. Essentially,
the probability of a binary classifier to output positive pre-
dictions in the test data is:

p(pos) = p(pos|+)p̃(+) + p(pos|−)p̃(−) (1)

= tpr · p̃(+) + fpr · (1− p̃(+)) (2)

where p(pos|+) (and p(pos|−)) is the probability of predict-
ing positive given the true class is positive (negative), which
corresponds to the true (false) positive rate, and p̃(+) re-
flects the ground truth prevalence of positives in the test
set. Since tpr and fpr can be estimated from cross valida-
tion on training data, p(pos) can be computed based on the
individual predictions in the test data, the estimated true
prevalence in the test data can be computed as

p̃(+) =
p(pos)− fpr

tpr − fpr
. (3)

This corrected quantification method first appears in [14]
and is denoted as Adjusted Count (AC) in [5].

As seen in Eq. (3), a default threshold value of a classi-
fier might introduce a very small difference between tpr and
fpr, leading to unreliable estimates. In the worse case, the

Given: network N(V, E);
labels y` of some nodes;
maximum number of hops kmax;

Output: the prevalence of the positive class p̃(+).
for k = 1, 2, · · · , kmax

for each node i in V

estimate p(̂ik|+) and p(̂ik|−) based on N and y`;

estimate p(̂ik) in N ;
compute the prevalence p̃k

i (+) based on Eq. (6);
end

end
discard all invalid p̃k

i (+);
output p̃(+) as the median of valid {p̃k

i (+)}.

Figure 3: Link-based Quantification

solution does not exist when tpr = fpr. Hence, Forman
proposed several heuristics to set classification thresholds
resulting in different tpr and fpr values as to obtain more
accurate quantification. One recommended heuristic (de-
noted as T50) is to set a threshold so that tpr = 50%.

Another more reliable quantification method is median sweep
(MS). As suggested by the name, MS exhausts all the possi-
ble classification thresholds resulting in distinctive tpr and
fpr values. For each threshold, an estimate of the prevalence
is obtained. The final prevalence quantity is the median of
all the estimates.

Fortunately, all the quantification methods above can be mi-
grated to a network setting. The nuance is that we have to
use a classifier tailored for network classification. As long
as it outputs a prediction score for each node in the net-
work, the classification-based quantification methods can be
applied. In later experiments, we will study and compare
these different quantifiers handling network data.

At present, one common strategy for prediction in a net-
work is collective inference [11, 15]. It assumes the labels of
one node depend on the labels (or attributes) of its neigh-
bors, which is consistent with the homophily effect observed
in many social networks [17]. An iterative process is re-
quired to determine the class labels for the unlabeled data
in turn, so that the inconsistency between neighboring nodes
is minimized. When networks scale to millions of nodes, this
computation can be very expensive. Since the goal of quan-
tification diverges from that of typical classification, can we
avoid the classification process and address quantification di-
rectly? In the next section, we provide a simple solution.

4. QUANTIFICATION BASED ON LINKS
In this part, we present one link-based quantification method
that does not involve a classification component. Inspired by
Eq. (1), we model the connections to one node as a mixture

of distributions conditioned on classes. Let p(̂i) denote the

probability of another node connecting to node i, p(̂i|+) is
the probability of a connection from a node of positive class
to vertex i, and p(̂i|−) the probability of a node of negative
class connecting to vertex i. We have the following equation:

p(̂i) = p(̂i|+)p̃(+) + p(̂i|−)p̃(−). (4)

Note that p(̂i) can be estimated directly from a network, and

both p(̂i|+) and p(̂i|−) can be estimated from the labeled



samples. As p̃(+) + p̃(−) = 1, it follows that

p̃(+) =
p(̂i)− p(̂i|−)

p(̂i|+)− p(̂i|−)
, (5)

if p(̂i|+) 6= p(̂i|−). Take node 4 in Figure 1a as an example.
We have

p(4̂) = 5/8,

since node 4 is connecting to 5 other nodes among all the 8
nodes. Similarly, we have

p(4̂|+) = 2/3; p(4̂|−) = 1/2.

According to Eq. (5), it follows that

p̃(+) =
5/8− 1/2

2/3− 1/2
= 75%.

Note that the solution in Eq. (5) is not defined if p(̂i|+) =

p(̂i|−). It may also reside outside the valid prevalence range
between 0 and 1. In that case, we simply discard it. As each
node i in the network can lead to an estimate, we collect all
the valid estimates and output the median as the prevalence,
because median is well known for its robustness.

Another issue we want to emphasize is the sparsity issue.
The number of neighboring nodes to labeled samples might
be too few, leading to insufficient valid estimates. In this
case, we can expand the neighboring nodes by considering
all the nodes that are k-hops away. Correspondingly, we
replace p(̂i) by p(̂ik), which is the probability of a node in
the network that is exactly k-hops away from node i. Sim-
ilarly, we can substitute p(̂i|+) and p(̂i|−) by p(̂ik|+) and

p(̂ik|−), respectively. Then, we have the following general
form for prevalence estimation when considering nodes that
are exactly k hops away from node i:

p̃k
i (+) =

p(̂ik)− p(̂ik|−)

p(̂ik|+)− p(̂ik|−)
. (6)

Eq. (5) is a special case when k = 1. As a small-world effect
is observed in many networks, k ≤ 3 often can generate
sufficient valid estimates. The detailed algorithm of this
link-based quantification is summarized in Figure 4.

5. EXPERIMENT SETUP
Below, we describe evaluation measures, benchmark data
sets and quantification methods for comparison.

5.1 Evaluation Measure
Let p̂ and p denote the estimation and the ground truth
of prevalence, respectively. Following [5], we adopt three
different measures for comparison: bias, absolute error and
KL divergence.

• Bias: p̂ − p. Bias is to study whether a quantifier
shows any bias toward overestimation or underestima-
tion. But a positive bias and a negative bias in another
run might lead to zero average bias, thus another nat-
ural solution is to use the absolute error.

• Absolute Error: |p̂ − p|. By averaging the error over
benchmark data sets, we can have an overall sense of
how a quantification method works. However, it seems

Table 1: Statistics of Different Network Data

Data CoRA IMDb Industry
# nodes 4240 1169 2189
# edges 22516 51481 13062
density 0.0025 0.050 0.054

# classes 7 2 4
prevalence 6.3− 32.2% 42.7% 12.2%− 27.8%
diameter 16 7 8

reasonable to look at relative errors since an estimate
of 1% when the ground truth is 5% should be worse
than an estimate of 41% when the ground truth is 45%.
So KL divergence can be exploited.

• KL divergence (a.k.a. normalized cross entropy):

DKL(p̂||p) = p̂ log
p̂

p
+ (1− p̂) log

1− p̂

1− p
. (7)

The divergence becomes zero if p̂ = p and goes to
infinity when p approaches to 0 or 1.

5.2 Data Sets
For comparison purpose, we use three benchmark network
data sets1: CoRA, IMDb and Industry. CoRA comprises
computer science research papers. The network is constructed
based on the citations among them, with classes being the
topics of each paper. IMDb is obtained from Internet Movie
Database2. It contains movies released in the United States
between 1996 and 2001, with class labels identifying whether
the opening weekend box-office receipts will exceed $2 mil-
lion. Two movies are connected if they share a production
company. Industry contains companies that are linked via
co-occurrence in text documents. The companies are classi-
fied into 12 industry sectors.

Note that some data sets have more than one classes. Hence,
we convert them into multiple binary classification problems
by treating one class as positive and all the remaining ones
as negative. Some classes have too few instances, thus they
are not included as a task for quantification evaluation, but
their connections are still considered. In total, there are
12 classes for prevalence estimation. Some other statistics
concerning each network data are presented in Table 5.2.

To evaluate the effectiveness of different quantifiers, we fix
the number of negative instances to be 100, and change the
number of positive instances ranging from 10 to 100. In
particular, we want to examine cases when the class distri-
bution of labeled samples is highly skewed. In another case,
we fix the number of negative instances to 500, and change
the number of positive instances from 10 to 100 again. Then
the number of positive instances in labeled samples is as low
as around 2% − 20%. Each setup is repeated for 10 runs,
and the average results are reported.

5.3 Quantification Methods
In the experiments, both classification-based and link-based
quantification are included for comparison. Classification-
based quantification methods are:
1http://netkit-srl.sourceforge.net/data.html
2http://www.imdb.com/
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• Classify and Count (CC);

• Adjusted Count (AC) based on Eq. (3);

• Probabilistic Classify and Count (pCC);

• Probabilistic Adjusted Count (pAC);

• T50 assigning a threshold such that tpr = 50% in
Eq. (3);

• Median Sweep (MS). We exhaust threshold values of
0.01, 0.02, · · · , 0.99. Each threshold produces a preva-
lence estimate and the final output is the median among
all the valid ones.

For classification with network data, we adopt wvRN im-
plemented in NetKit-SRL [15] as it is recommended based
on extensive comparison across different data. Since all
classification-based methods need tpr and fpr to apply Eq. (3),
we apply 10-fold cross validation to estimate tpr and fpr as
suggested by [5] after we obtain prediction scores for all the
nodes.

The link-based quantification (LBQ) is also compared. As
for LBQ, it involves a parameter kmax which is defined to be
the maximum number of hops to consider for computation.
If we only consider 1-hop connections, essentially only those
nodes that are 1-hop away from the labeled nodes can help
quantification. The majority of the network structure is not
considered. When we expand LBQ to consider connections
of nodes that are 2-hop away, a large-portion of the network
structure is taken into account. Hence more estimates based
on Eq. (6) can be obtained. However, considering 3-hop
connections might introduce too much noise, let alone the
computational cost. Figure 5.3 shows the average number
of valid estimates contributed from connections of exactly k
hops on Industry data. A similar trend is observed on other
data. Note that 2-hop produces the maximum number of
valid estimates. 3-hop enforces LBQ to look at more con-
nections, but most of them cannot produce a valid estimate
based on Eq.(6). Hence, we only include the comparison
when kmax is set to 2 or 3 (denoted as LBQ2 and LBQ3,
respectively).

6. EXPERIMENTS
In this section, we compare different quantification methods
based on several network data sets. In particular, we study
the following questions:

• Is quantification necessary for network data?

• Which quantification method is more accurate?

• How efficient are different methods?

Due to space limit, we only report the performance of quan-
tification methods averaged over different data sets and classes.
Figures 5.3 and 5.3 show the quantification performance
when we fix the number of negative instances to 100 and
500, respectively.

6.1 Is quantification necessary?
First, CC is highly unreliable. CC is biased depending on
the class distribution in the training data as shown in Fig-
ure 5a With few positive instances, CC yields a negative
bias; When positive instances increases, CC instead overes-
timates the class prevalence. When the negative instances
increases to 500, almost all the methods shift toward neg-
ative bias. In this case, CC demonstrate a strong negative
bias, implying that CC is quite sensitive to the bias as in
the labeled samples.

The strong bias of CC is also verified by the high absolute
error and KL-divergence. Most of the time, CC performs
the worst. If we simply count the classification predictions,
the quantification error can be huge. Hence, some correc-
tion must be adopted to reduce the error. If we use the
probabilistic classify and count (pCC), the error is reduced,
indicating a soft version of classification does help for quan-
tification. However, when biases are presented in the labels,
using a probabilistic prediction only provides limited refine-
ment.

CC is even worse when we have a highly imbalanced training
data as shown in Figure 5.3. As in this setting, the negative
instances are increased to 500, whereas the number of pos-
itive instances ranges from 10 to 100, resulting in a highly
skewed class distribution. This strong imbalance in training
data results in a severe underestimate for CC as shown in
Figure 6a. Both absolute error and KL-divergence are in-
flated. In general, both classification and link-based quan-
tification methods outperform CC consistently as shown in
Figures 5.3 and 5.3, confirming the necessity of quantifica-
tion.

6.2 Which quantifier is more accurate?
Comparing different quantification methods, Median Sweep
(MS) is no doubt the winner. It consistently outperforms
other quantification methods in terms of absolute error and
KL-divergence. This result is consistent with the empirical
results on text data as reported in [5].

Besides MS, Probabilistic Adjusted Count (AC) seems to
work fine. We notice that in [5], CC or AC based on proba-
bilistic prediction is not included for comparison. However,
based on our empirical result, it seems that soft classification
often yields better quantification performance. However, AC
or PAC does not always return a valid solution (i.e., a preva-
lence estimate outside [0, 1]), limiting its success3.

3In the figure, we exclude those invalid cases for AC and
pAC while computing the average.
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Figure 5: Performance when the number of negative instances for training is fixed to 100.
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Figure 6: Performance when the number of negative instances for training is fixed to 500.

LBQ, as shown in the figures, tends to yield lower absolute
error or KL-divergence than simple CC and pCC. But it
does not model the prevalence as accurate as classification-
based quantification. On the other hand, its performance
is sensitive to the number of hops for considering the links.
However, LBQ is much more efficient than other classifica-
tion based approaches, as we show in the next subsection,

6.3 How efficient is each method?
One advantage of LBQ is its efficiency. Since AC, T50
and MS all rely on individual prediction scores for quan-
tification, collective inference has to be conducted, which
often requires multiple scans of a given network thus time-
consuming. Moreover, these methods need to estimate tpr
and fpr in Eq. (3), involving tedious cross-validation. On
the contrary, LBQ does not count on individual predictions,
thus eliminating the necessity of collective inference and
cross validation, saving enormous computational time. It
only requires one scan of the network with update of some
simple statistics. Consequently, LBQ can be extremely effi-
cient.

Table 6.3 lists the average computation time on Industry
data for different methods. Since our labeled samples are
few, the cross validation for classification-based quantifica-
tion does not take too much time. However, the major com-
putational cost for classification cannot be evaded. It takes
over 16 minutes to obtain individual predictions on a Intel

Table 2: Computational Time for Different Methods

Method AC T50 MS LBQ
Classification 16 min 20s 0
Quantification 4s 14 s 17s 11s

Core 2 Duo 3.33GHz CPU. Comparatively, LBQ takes 11
mere seconds. Note that the benchmark data presented here
is relatively small, with only thousands of nodes. Consider a
network of much larger size (say millions of actors), the dif-
ference of link-based and classification-based quantification
methods can be more drastic.

It seems that MS, pAC and LBQ all can correct the biases
associated with labels for prevalence estimation. MS, by
exhausting all the possible thresholds, tends to yield more
accurate prevalence estimation. pAC performs reasonable
well, but it sometimes outputs an invalid solution. Both MS
and pAC rely on classification, hence their computational
time can be tremendous if a given network is huge. There-
fore, LBQ is suitable for initial guess when an immediate
response of network quantification is preferred.

7. RELATED WORK
Estimating the hidden population in a social network is a
classical problem studied in social science. This problem
occurs for populations that are normally difficult to reach



by random sampling, such as drug injectors [8], sex work-
ers [16] and unregulated workers [2]. Traditional methods
take the form of chain referral sampling. The best known
approach in this form is snowball sampling [7], which allows
the sampled individuals to provide information about their
contacting friends. Klovdahl [13] proposes a ”random walk”
approach in which each wave of snowball sampling contains
only one individual. Spreen and Zwaagstra [19] propose a
combination of snowball and targeted sampling, termed ”tar-
geted personal network sampling,” to analyze the structure
of cocaine users’ personal networks. Frank and Snijders [6]
refine the chain-referral model using a one-wave snowball
sampling to estimate the population size. Despite the efforts
and progress, ”How to draw a random (initial) sample” is
still a key unsolved problem. As the selection of initial sam-
ples in a chain-referral model may cause bias into inferences,
many other approaches such as key information sampling [3]
and targeted sampling [22] are widely employed response to
this deficiency. Recently, respondent driven sampling [8] is
proposed for sampling design and population inference in a
social network. By tracing the links in the underlying social
network, the RDS process exploits the social structure to ex-
pand the sample and reduce its independence on the initial
sample. All these aforementioned methods focusing on how
to choose qualified samples applicable to a hidden popula-
tion. Different from quantification studied in this work, the
structure of the network, including size and membership, is
not available to researchers.

On the other hand, quantification is also calling attention
in data mining field [5]. Some machine learning methods
for accurately estimating the class distribution of a test set,
using a training set that may have a substantially different
distribution, have been designed and applied to various do-
mains. Levy and Kass [14] apply a three-population model
to derive estimators of the prevalence of bacteria in the pop-
ulation of the test; Zhou et al. estimate the prevalence
of a disease in a test population with an imperfect binary
diagnostic test with known sensitivity and specificity [24];
George Forman [4] compares 3 methods: classify & count,
adjusted count, and mixture model, to count positives accu-
rately despite the substantial bias in estimating class preva-
lence caused by inaccurate classification. Hopkins et al. de-
velop an automated content analysis method to examine the
support of thousands of people through their daily expressed
opinions of blog posts about the U.S. presidency [9]. Quan-
tification is also applied to help semi-supervised learning
when labeled samples and unlabeled samples follow differ-
ent class distributions [23]. George Forman [5] describes a
variety of quantification methods and evaluates them with a
suitable methodology, revealing which methods give reliable
estimates when training data is scarce and the positive class
is rare. Differently, in this work, we focus on quantification
in a social network by dealing with bias of available labels.

8. CONCLUSIONS AND FUTURE WORK
This work, to our best knowledge, is the first work to study
network quantification problem. That is, given some la-
beled samples from a network, how can we estimate the
prevalence of certain classes in the network? This work is a
summary of some ongoing work we are currently pursuing.
We show that straightforward baseline approaches are error-
prone especially when labeled samples are few and imbal-

anced. Two kinds of quantification are presented and com-
pared. 1) Classification-based quantification do not model
the prevalence directly, but hinge on post-processing to cor-
rect the bias with labels. One specific method Median Sweep
(MS) is quite robust and outperforms other methods; 2) The
link-based approach relies on link analysis to estimate the
class prevalence. It does not require classification and pre-
diction, thus saving tremendous computational cost. But its
quantification performance is not comparable to MS. It re-
mains an open problem to model the class prevalence more
effectively and efficiently and we hope to encourage more
research to address this network quantification problem.

As we discussed in the introduction, social media presents
both network and attribute data. We plan to harness both
types of information for effectively quantify online collec-
tive behavior. It requires further research to unify the flood
of network data with quantification to estimate rare events
such as the click-through rate of one class of advertisement in
a population [1]. Recently, we proposed one social dimension
based framework for network-based classification [20, 21]. It
extracts social dimensions from a network and the classi-
fication performance outperforms representative collective
inference based methods. It would be interesting to extend
social-dimension based approach for quantification as well.
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