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Abstract

The explosive popularity of social media produces
mountains of high-dimensional data and the nature of
social media also determines that its data is often unla-
belled, noisy and partial, presenting new challenges to
feature selection. Social media data can be represented
by heterogeneous feature spaces in the form of multiple
views. In general, multiple views can be complemen-
tary and, when used together, can help handle noisy
and partial data for any single-view feature selection.
These unique challenges and properties motivate us to
develop a novel feature selection framework to handle
multi-view social media data. In this paper, we investi-
gate how to exploit relations among views to help each
other select relevant features, and propose a novel unsu-
pervised feature selection framework, MVFS, for multi-
view social media data. We systematically evaluate the
proposed framework in multi-view datasets from social
media websites and the results demonstrate the effec-
tiveness and potential of MVFS.

1 Introduction

The prevalent use of social media generates massive
data at an unprecedented rate. For example, 250
million tweets are posted per day1; 3,000 photos are
uploaded per minute to Flickr2; and 60 hours of video
are uploaded every minute to Youtube3. Such data
can be usually represented by heterogeneous feature
spaces in the form of multiple views. For example,
when users upload photos into Flickr, they are asked
to provide tags as well as text descriptions about the
photos. Thus photos can be described by three high-
dimensional feature spaces, i.e., SIFT feature space
(visual photo content) [1], tag space (tags), and term
space (text descriptions). The nature of social media
also determines that each view is often noisy and
incomplete. The multi-view data raises a natural, yet
rarely exploited problem: how to prepare the high-
dimensional multi-view data for effective data mining.
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Feature selection has been proven to be an effective
approach to handling large-scale and high-dimensional
data [22, 5]. Most of the existing feature selection meth-
ods were developed for traditional single-view data.
Two straightforward strategies to apply existing fea-
ture selection methods to multi-view social media data
are: (1) the concatenating strategy - converting multi-
view data into single-view data by concatenating het-
erogeneous feature spaces into one homogeneous fea-
ture space as shown in Figure 1(a); and (2) the sep-
aration strategy - performing traditional feature selec-
tion on each view separately as demonstrated in Fig-
ure 1(b). The concatenating strategy ignores the dif-
ferences among heterogeneous feature spaces while the
separation strategy considers each view independently.
However, views are inherently related since they de-
scribe the same set of objects through different feature
spaces. In general, multiple views can provide comple-
mentary information such as tags and text descriptions
in Flickr provide semantic information about photos,
and can potentially help us achieve better performance.
Note that we do not consider the concatenating strat-
egy in our current work since our initial experimental
results show that its performance is much worse than
that of the separation strategy and we call traditional
feature selection with the separation strategy as single-
view feature selection for convenience.

In this paper, we study a novel problem of feature
selection for multi-view social media data in an unsu-
pervised scenario as in Figure 1(c): views are repre-
sented by heterogeneous feature spaces and it aims to
select features for all views simultaneously by exploit-
ing relations among views. For example, we select vi-
sual features, tags, and terms for photos in Flickr si-
multaneously. This multi-view feature selection prob-
lem is apparently distinct from single-view feature se-
lection: (1) multi-view feature selection studies multi-
ple views together and exploits relations among views
while single-view feature selection studies each view sep-
arately; and (2) multi-view feature selection can select
features from heterogeneous feature spaces simultane-
ously while single-view feature selection selects features
from a homogeneous feature space each time. Since
single-view feature selection algorithms are unequipped
for multi-view social media data, we propose to inves-
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Figure 1: Different Strategies to Handle Multi-view Social Media Data

tigate two problems: (1) how to exploit the relations
among views; and (2) how to take advantage of these re-
lations for unsupervised feature selection. The solutions
to the two problems result in an unsupervised feature
selection framework MVFS for multi-view data. The
main contributions of this paper are summarized below,

• Defining the novel problem of unsupervised feature
selection for multi-view data formally and propos-
ing to exploit the relations among views in formu-
lating multi-view feature selection;

• Introducing a new way to capture the relations
among views and guide the development of an
unsupervised feature selection framework;

• Proposing a novel unsupervised feature selection
framework, MVFS, for multi-view data to select
features from heterogeneous feature spaces simul-
taneously by exploiting view relations; and

• Evaluating the proposed framework, MVFS, sys-
tematically using datasets from real-world social
media websites in comparison with single-view fea-
ture selection algorithms.

2 Problem Statement

Let p = {p1, p2, . . . , pn} be the set of posts where n is
the number of posts. Note that we use post here in a
loose way to cover user generated content in social media
such as photos, videos, or tweets. Assume that the set
of posts i.e., p, can be represented by m heterogeneous
feature spaces with m views. Let F = {f1, f2, . . . , fm}
be the set of m feature spaces and fi ∈ R

ℓi denote
the feature space for the i-th view where ℓi is the
number of features in the i-th feature space fi. Let
X = {Xi ∈ R

ℓi×n}mi=1 denote the set of views and Xi

be the matrix representation of the i-th view.
With the notations defined above, the problem

of unsupervised feature selection for multi-view data
can be stated as: given n objects with multi-view
representations X by m heterogeneous feature spaces
F , develop a method HMV FS which can select a subset
of relevant features (e.g., f ′i), for each feature space (e.g.,

fi), simultaneously for these n objects by exploiting the
relations among views.

3 Unsupervised Feature Selection Framework

for Multi-View Data

Recall that multi-view data in social media poses two
main challenges for unsupervised feature selection: (1)
how to exploit relations among views; and (2) how
to take advantage of these relations for unsupervised
feature selection. In the following subsections, we will
present the details about the solutions to these two
challenges based on pseudo-class labels, resulting in
a novel unsupervised feature selection framework for
multi-view data.

3.1 Exploiting Relations among views Most ex-
isting work about multi-view learning assumes that all
views share the same label space, and the views are
correlated through the label space [6]. As we know,
the main difficulty with unsupervised feature selection
is due to the lack of class labels. To tackle the challenges
caused by the lack of class labels, we introduce the con-
cept of pseudo-class labels to exploit relations among
views, guiding the development of the framework.

We assume that Z ∈ R
n×k is the pseudo-class

label matrix where k is the number of pseudo-class
labels and each data point belongs to only one class
where Z(i, j) = 1 if pi belongs to the j-th pseudo-
class, otherwise Z(i, j) = 0. Thus Z should satisfy the
following constraints,

Z(i, :) ∈ {0, 1}n, ‖Z(i, :)‖0 = 1, ∀ i, 1 ≤ i ≤ n,

where ‖ · ‖0 is the vector zero norm, which counts the
number of nonzero elements in the vector.

Set si = π(

ℓi−ki

︷ ︸︸ ︷

0, . . . , 0,

ki

︷ ︸︸ ︷

1, . . . , 1) where π(·) is the
permutation function and ki is the number of features
to select for the i-th view where si(j) = 1 indicates
that the j-th feature in the i-th feature space fi is
selected. The original view Xi can be represented
as X′

i = diag(si)Xi with ki selected features, where
diag(si) is a diagonal matrix. With the pseudo-class
label information, we further assume that there is a



mapping matrix Wi ∈ R
ℓi×k for the i-th view, which

assigns data points with pseudo-class labels. Let Yi =
(X′

i)
⊤Wi be the pseudo-class label assignment matrix

and W = {W1,W2, . . . ,Wm} be the set of mapping
matrices. Then the relations among views can be
captured by the following optimization problem,

min
W,Z

m∑

i=1

‖(X′
i)

⊤Wi − Z‖2F ,

s.t. ‖Z(i, :)‖0 = 1, i ∈ {1, 2, . . . , n},

Z(i, j) ∈ {0, 1}, j ∈ {1, 2, . . . , k},(3.1)

where we force each pseudo-class label assignment ma-
trixYi, close to the pseudo-class label matrix Z, accord-
ing to the assumption that views are correlated through
their shared label space.

3.2 The Framework: MVFS With pseudo-class
labels, we are further allowed to take advantage of
information from each view, i.e., Xi, based on spectral
analysis [26]: similar data instances should have similar
labels. Thus the constraint from the i-th view can be
formulated as the following minimization problem,

min Tr(Z⊤LiZ)(3.2)

where Li = Vi − Si is a Laplacian matrix and Vi is a
diagonal matrix with its elements defined as Vi(j, j) =∑n

K=1 Si(K, j). Si ∈ R
n×n denotes the similarity

matrix based on Xi via a RBF kernel in this work.
By introducing the concept of pseudo-class labels,

we can exploit the relations among views as well as the
information from each view. With these preliminary
solutions, we propose a novel unsupervised feature se-
lection framework, MVFS, for multi-view data, which is
formulated to solve the following optimization problem.

min
W,Z,si

m∑

i=1

λi

(
Tr(Z⊤LiZ) + α‖(X′

i)
⊤Wi − Z‖2F

)

s.t. si ∈ {0, 1}
n, s⊤i 1n = ki,

‖Z(i, :)‖0 = 1, i ∈ {1, 2, . . . , n},

Z(i, j) ∈ {0, 1}, j ∈ {1, 2, . . . , k}.
(3.3)

In Eq. (3.3), the first term is used to obtain the
information from each view while the second term is
used to exploit the relations among views by their
shared label space, i.e., pseudo-class label Z. α is
introduced to control the contributions of these two
parts. The parameter λi is employed to control the
contributions from each view and

∑m

i=1 λi = 1.
The constraints in Eq. (3.3), mixed vector zero

norm with integer programming, make the problem

difficult to solve. First, we consider the constraints
on the pseudo-class label indicator matrix Z. By
relaxing the value of Z from {0, 1} to a continuous
nonnegative value, we convert the constraints on Z into
the constraints,

Z⊤Z = Ik, Z ≥ 0(3.4)

where the orthogonal and nonnegative constraints on Z

guarantee that there is only one positive element in each
row and others are zeros.

Because vectors of zero norm are mixed with integer
programming in the constraints of Eq. (3.3), they make
the problem difficult to solve. We observe that diag(si)
and Wi is always in the form of diag(si)Wi in Eq. (3.3).
Since si is a binary vector and ℓi − ki rows of diag(si)
are all zeros, diag(si)Wi is a matrix where the elements
of many rows are all zeros. This motivates us to absorb
diag(si) into Wi, Wi = diag(si)Wi, and add ℓ2,1 norm
on Wi to ensure the sparsity of Wi in rows and achieve
feature selection.

With these relaxations, MVFS is to solve the fol-
lowing optimization problem,

min
W,Z

J (W,Z) =

m∑

i=1

λi

(
Tr(Z⊤LiZ)+

α(‖X⊤
i Wi − Z‖2F + β‖Wi‖2,1)

)

s.t. Z⊤Z = I, Z ≥ 0.(3.5)

where ‖Wi‖2,1 controls the capacity of Wi and also
ensures thatWi is sparse in rows, making it particularly
suitable for feature selection. The parameter β controls
the sparsity of Wi.

There are m + 1 components, i.e., W and Z, in
the objective function of Eq. (3.5), and it is difficult to
optimize these components simultaneously. Below, we
apply an alternating optimization to solve this problem
and update {Wi}

m
i=1 and Z iteratively and alternatingly

to find an optimal solution for Eq. (3.5).
Computing {Wi}

m
i=1, given Z: If Z is fixed, the con-

straints are independent on {Wi}
m
i=1 and the relations

among views are decoupled, suggesting that we can op-
timize each Wi (1 ≤ i ≤ m), separately. Wi can be
obtained by solving the following problem,

min
Wi

J (Wi) = ‖X
⊤
i Wi − Z‖2F + β‖Wi‖2,1.(3.6)

Taking the derivation of J (Wi) and setting it to
zero, we can obtain the update rule for Wi as,

(3.7) Wi =
(
XiX

⊤
i + βDi

)−1
XiZ,

where Di is a diagonal matrix with the j-th diagonal
element is Di(j, j) = 1

2‖Wi(j,:)‖2

. We develop the



following theorem to show that the update rule in
Eq. (3.7) can monotonically decrease the objective
function value of J (Wi).

Theorem 3.1. The update rule in Eq. (3.7) can mono-
tonically decrease the objective value of J (Wi).

Proof. The proof process is similar to that in [27, 29].
To save space, we ignore the detailed proof.

Computing Z, given {W}mi=1: If {W}
m
i=1 are fixed,

Z can be obtained through solving the following opti-
mization problem,

min
Z

J (Z) = Tr(Z⊤MZ) +

m∑

i=1

γi‖Ai − Z‖2F

s.t. Z⊤Z = I, Z ≥ 0.(3.8)

where M =
∑m

i=1 λiLi, γi = λiα and Ai = X⊤
i Wi.

The Lagrangian function of Eq. (3.8) is:

L(Z) = Tr(Z⊤MZ) + Tr
(
Γ(Z⊤Z− I)

)

− Tr(ΛZ) +

m∑

i=1

γiTr(−2A
⊤
i Z+ Z⊤Z),(3.9)

where Γ and Λ are Lagrangian multipliers. Using the
KKT condition, Λ(j, l)Z(j, l) = 0, we obtain,

(MZ+
m∑

i=1

(
− γiAi + γiZ

)
+ ZΓ)(j, l)Z(j, l) = 0.

which leads to the following update rule for Z,

Z(j, l)← Z(j, l)

√ (
M−Z+

∑m

i=1 γiA
+
i + ZΓ−

)
(j, l)

(
M+Z+

∑m

i=1 γi(A
−
i + Z) + ZΓ+

)
(j, l)

.

(3.10)

where X+(j, l) = (|X(j, l)| + X(j, l))/2, X−(j, l) =
(X(j, l)− |X(j, l)|)/2 and X = X+ −X−.

From Eq. (3.9), summing over j, we obtain Γ(j, j) =
(∑m

i=1 γi(Z
⊤Ai − I) − Z⊤MZ

)
(j, j). The off-diagonal

elements of Γ are approximately obtained by ignor-
ing the non-negative of Z, which leads to Γ(j, l) =
(∑m

i=1 γi(Z
⊤Ai − I)−Z⊤MZ

)
(j, l). Combining these,

we get Γ =
∑m

i=1 γi(Z
⊤Ai − I)− Z⊤MZ.

Next we will use the auxiliary function ap-
proach [10] to show that the update rule in Eq. (3.10)
will monotonically decrease the value of the objective in
Eq. (3.8). The definition of the auxiliary function can
be found in [10].

Theorem 3.2. Let

H(Z) = Tr
(
Z⊤MZ+

m∑

i=1

γi(−2A
⊤
i Z

+ Z⊤Z) + Γ(Z⊤Z− I)
)
.

Then the following function h(Z, Z̃),

h(Z, Z̃) =
∑

ijl

γi
(
A−

i (j, l)
Z2(j, l) + Z̃2(j, l)

Z̃(j, l)
+

Z̃(j, l)Z2(j, l)

Z̃(j, l)

)

+
∑

jl

( (Z̃Γ+)(j, l)Z2(j, l)

Z̃(j, l)
+

(M+Z̃)(j, l)Z2(j, l)

Z̃(j, l)

)

−
(∑

jl

(∑

i

2γiAi(j, l)
)
Z̃(j, l)

(
1 + log

Z(j, l)

Z̃(j, l)

)

+
∑

ijl

Γ−(j, l)Z̃(i, j)Z̃(i, k)
(
1 + log

Z(i, j)Z(i, l)

Z̃(i, j)Z̃(i, k)

)

+
∑

ijl

M−(j, l)Z̃(j, i)Z̃(k, i)
(
1 + log

Z(j, k)Z(i, l)

Z̃(j, i)Z̃(j, l)

))

,

is an auxiliary function of H(Z). h(Z, Z̃) is convex and
its global minimum is,

Z(j, l) = Z(j, l)

√ (
M−Z+

∑m

i=1 γiA
+
i + ZΓ−

)
(j, l)

(
M+Z+

∑m

i=1 γi(A
−
i + Z) + ZΓ+

)
(j, l)

.

Proof. The detailed proof is presented in Appendix 6.1.

Theorem 3.3. Updating Z as Eq. (3.10) will monoton-
ically decrease the value of J (Z).

Proof. Since H(Z) is the Lagrangian function of
Eq. (3.8) with KKT condition, we just need to verify
that the update rule will monotonically decrease the
value of H(Z). Through the definition of the auxiliary
function and Theorem 3.2, we can obtain the following
inequality chain:

H(Z0) = h(Z0,Z0) ≥ h(Z0,Z1) ≥ H(Z1) . . .

, which completes the proof.

With update rules for both W and Z, we present
the detailed algorithm to optimize the problem defined
in Eq. (3.5) in Algorithm 1. For the convergence of the
proposed algorithm, we develop the following theorem.

Theorem 3.4. Algorithm 1, optimizing the objective
function J (W,Z), converges.

Proof. With Theorem 3.1 and Theorem 3.3, we can get
the following inequality chain,

J (W0,Z0) ≥ J (W1,Z0) ≥ J (W1,Z1) . . . .

J (W,Z) is bounded since J (W,Z) ≥ 0. Thus Algo-
rithm 1 converges, which completes the proof.



Algorithm 1 The Proposed Framework: MVFS

Input: {Xi, λi, ki}
m
i=1, k, α, β

Output: ki(1 ≤ i ≤ m) features for the i-th view

1: for i = 1 to m do

2: Construct the laplacian matrix Li

3: Set Di as an identify matrix and set γi = λiα
4: end for

5: Construct M =
∑m

i=1 λiLi, M
+ and M−

6: Initialize Z as Z⊤Z = I

7: while Not convergent do
8: for i = 1 to m do

9: Update Wi ←
(
XiX

⊤
i + βDi

)−1
XiZ

10: Construct Ai = X⊤
i Wi, A

+
i and A−

i

11: end for

12: Set Γ =
∑m

i=1 γi(Z
⊤Ai−I)−Z⊤MZ, Γ+ and Γ−

13: Update Z via Eq. (3.10)
14: end while

15: for i = 1 to m do

16: Sort each feature for Xi according to ‖Wi(j, :)‖2
in descending order and select the top-ki ranked
ones.

17: end for

4 Experiments

In this section, we conduct experiments to evaluate
our proposed framework by answering the following
two questions: (1) do we gain by studying MVFS as
expected? and (2) which strategy is better for multi-
view data? Since we only consider the separation
strategy for applying existing feature selection methods
to multi-view data, we can answer both questions by
studying the effectiveness of the proposed framework
comparing with the state-of-the-art single-view feature
selection algorithms. Finally we investigate how the
parameters of MVFS (e.g., numbers of pseudo-class
labels) affect feature selection performance.

4.1 Datasets To evaluate MVFS, we crawled two
multi-view datasets from real-world social media web-
sites, i.e., Flickr and BlogCatalog.

Flickr is a photo sharing website where users can
specify tags and provide text descriptions for photos
they upload. Photos are organized under pre-specified
categories, used as the ground truth of class labels in
our experiment. Each post in this dataset has three
views, i.e., photo visual content (V1), tags (V2) and text
descriptions (V3).

BlogCatalog4 is a blog directory website where
users can register their blogs under predefined cate-
gories, used as the ground truth of class labels in our

4http://www.blogcatalog.com/

Table 1: Statistics of the Datasets
Flickr BlogCatalog

# Posts 379 3,744
# Classes 6 6
# Views 3 2

Views V1 V2 V3 V1 V2

# Features 7,500 3,631 4,570 6,115 5,764

evaluation. To improve the access to blogs, users also
specify the tags associated with each blog. Therefore
each post has two views, i.e., blog content (V1) and its
associated tags (V2).

Posts, represented by term space, are preprocessed
for stop-word removal and stemming. Some statistics of
these datasets are shown in Table 1.

4.2 Baseline Methods and Evaluation Metrics

MVFS is compared with the following representative
unsupervised single-view feature selection algorithms:
(1) LapScore [20] - the importance of a feature is
evaluated via its power of locality preservation; (2)
SPEC [33] - features are selected through spectral
regression; and (3) UDFS [32] - features are selected
in batch mode by simultaneously exploiting feature
correlation and discriminative information. The focus
of this paper is to investigate whether we can gain from
the study of multi-view feature selection. After the
verification of its effectiveness, we can further explore
the effect of link information [29, 30] on multi-view
feature selection.

Following the usual evaluation way for unsupervised
feature selection, we assess the proposed framework
in terms of clustering performance (both single-view
clustering and multi-view clustering). Two common
used metrics are adopted to evaluate the clustering
quality, i.e., normalized mutual information (NMI) and
accuracy. We vary the numbers of selected features as
{150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900}.

4.3 Feature Selection for Single-view Cluster-

ing In this subsection, we investigate how different fea-
ture selection methods affect the performance of single-
view clustering. Each feature selection algorithm is first
performed to select features, and then a representative
single-view clustering method, K-means, is performed
based on the selected features. Since K-means often
converges to local minima, we repeat each experiment
20 times and report the average performance.

For each dataset, MVFS can select features for
all views simultaneously while baseline methods are
single-view algorithms and select features for each view
separately. Conventionally, the parameters in fea-
ture selection algorithms are tuned via cross-validation.
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Figure 3: Single-view Clustering Performance with
Different Feature Selection Algorithms in BlogCatalog.
Note that dash lines denote the clustering performance
with all features for each view.

For MVFS, λis are coefficients to combine multiple
views, which can be learnt automatically from data [7]
and other parameters are determined through cross-
validation. More details about the parameter selec-
tion for MVFS are given in Section 4.5. The result-
ing parameter values for MVFS are: {(λ1 = 0.4, λ2 =
0.3, λ3 = 0.3), α = 0.1, β = 0.1, k = 6} for Flickr while
{(λ1 = 0.6, λ2 = 0.4), α = 0.3, β = 0.1, k = 6} for Blog-
Catalog. The comparison results in Flickr and BlogCat-
alog are shown in Figures 2 and 3, respectively. Note
that dash lines in figures denote the clustering perfor-
mance with all features for each view.

Most of the time, with an increasing number of
features, the performance in terms of both Accuracy
and NMI first increases rapidly, reaches its peak value
and then degrades gradually. With smaller numbers of
selected features, we lose so much information about the
original data while we introduce irrelevant features with
larger numbers of selected features.

LapScore obtains comparable results with SPEC in
both datasets. Most of time, UDFS achieves slightly
better performance than LapScore and SPEC. LapScore
and SPEC analyze features separately and select fea-
tures one after another while UDFS selects features in
a batch mode and considers feature correlation [32].

We observe that our proposed MVFS algorithm
consistently outperforms all baseline methods. For ex-
ample, MVFS obtains up to 16.81% and 14.80% relative
improvement w.r.t. NMI in Flickr and BlogCatalog,
respectively. Multiple views provide complementary in-

Table 2: The Performance of Multi-view Clustering
Datasets Flickr BlogCatalog

Accuracy NMI Accuracy NMI
All Features 56.92 0.3814 55.06 0.3288

F-Optimal
LapScore 63.31 0.4601 60.42 0.3787
SPEC 63.54 0.4579 60.66 0.3769
UDFS 64.02 0.4601 59.98 0.3797
MVFS 66.85 0.4877 63.04 0.3963

F-Min
LapScore 57.99 0.4021 55.84 0.3204
SPEC 57.73 0.3959 55.84 0.3229
UDFS 58.09 0.3959 57.45 0.3229
MVFS 63.64 0.4355 61.57 0.3594

F-Max
LapScore 59.03 0.4009 58.03 0.3457
SPEC 59.42 0.4021 58.31 0.3475
UDFS 59.99 0.4077 58.47 0.3492
MVFS 64.08 0.4388 61.74 0.3686

formation and can help each other to select relevant fea-
tures. We also note that even for the same dataset, the
improvement of MVFS is different for different views.
For example, in BlogCatalog, on average, MVFS ob-
tains 4.39% relative improvement with respect to NMI
in V1 while it gains 2.69% improvement in V2.

4.4 Feature Selection for Multi-view Clustering

In this subsection, we investigate how feature selection
methods affect multi-view clustering. The experimental
settings are almost the same as single-view clustering
except the clustering method and the number of selected
features. For this evaluation, multi-view clustering
replaces single-view clustering as the clustering method.
Corresponding to K-means, the multi-view version of K-
means [3] is chosen for multi-view clustering.

Determining the optimal number of selected fea-
tures for single-view clustering is an open problem [32]
and it is even more difficult for multi-view clustering
considering the combinations of multiple views. For a
fair comparison, we use three ways to choose the number
of selected features: (1) F-Optimal: the number for a
specific feature selection method in each view is chosen
as when the best performance is achieved in the single-
view clustering experiments. For example, according to
Figure 3, the numbers of selected features for UDFS are
chosen to be 250 and 300 for V1 and V2 in BlogCat-
alog, respectively; (2) F-Min: the number is fixed to
150, which is the minimal number of selected features
in single-view clustering experiments; (3) F-Max: the
number is fixed to 900, which is the maximal number of
selected features in single-view clustering experiments.
The results are demonstrated in Table 2.

The first observation is that the multi-view version
of K-means (mvK-Means) significantly improves on its
single-view counterpart (K-means). For example, when
using all features, mvK-Means obtains 25.71%, 10.45%,
27.52% improvement in terms of NMI for V1, V2 and
V3 of Flickr, respectively. We note that for these
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Figure 2: Single-view Clustering Performance with Different Feature Selection Algorithms in Flickr. Note that
dash lines denote the clustering performance with all features for each view.

three ways, MVFS always obtains the best performance.
With the single-view clustering experiments, we can
conclude that we obtain performance improvement in
terms of both single-view and multi-view clustering by
the study of multi-view feature selection as expected.

4.5 Parameter Selection There are two important
parameters of the proposed framework, MVFS, i.e., k
the number of pseudo-class labels and α controlling the
contribution of capturing the relations among views.
How to determine the optimal number of selected fea-
tures is still an open question. In the following sub-
section, we will systematically investigate how the per-
formance of MVFS varies with its parameters (k or α)
and the number of selected features in terms of single-
view clustering. To save space, we only show the results
in BlogCatalog w.r.t. Accuracy since we have similar
observations with other settings.

Setting α = 0.3, we vary k from 2 to 14 with an
incremental step of 1 and the performance variation
w.r.t. k and the number of selected features is shown
in Figure 4. We note that with the increase of k,
the performance first increases, achieves its peak value
and then decreases. This observation can be used to
determine the optimal number of k. We also observe
that the performance is not sensitive to k when k is
from 4 to 10.

Setting k = 6, we vary α as {1e−4, 1e−3, 1e−2, 0.1,
0.3, 0.5, 0.7, 0.9}. The performance variance w.r.t. α
and the number of features is depicted in Figure 5. Most
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Figure 4: Numbers of Pseudo-class Labels vs Numbers
of Selected Features
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Figure 5: α vs Numbers of Selected Features

of the time, MVFS achieves its best performance when
α = 0.3, indicating the importance of capturing the
relations among views. After that, the performance
decreases, suggesting the importance of information
from each view. It also shows that an appropriate
combination of these two components is crucial for
MVFS to improve the performance.



5 Related Work

Based on whether the training data is labeled or not,
feature selection algorithms can be either supervised or
unsupervised [13, 23, 5]. Supervised feature selection
methods assess feature relevance by label information.
It can be further categorized into the wrapper mod-
els [14, 21] and the filter models [23, 28]. Due to the
availability of a large amount of unlabeled data, unsu-
pervised feature selection attracts more and more at-
tention [31, 20, 9, 5]. One key difference between super-
vised and unsupervised feature selection is the availabil-
ity of label information. Without label information that
guides to access feature relevance, unsupervised feature
selection [20, 13, 33] is particularly difficult since it is a
less constrained search problem, depending on cluster-
ing quality measures [16, 15], and can eventuate many
equally valid feature subsets. Without considering addi-
tional constraints, it is likely to find many equally good
sets of features for high-dimensional data. Another key
difficulty is how to objectively measure the results of
feature selection. A wrapper model is proposed in [13]
to use a clustering algorithm in evaluating the quality
of feature selection.

Recent years have seen many embedded feature se-
lection methods through sparsity regularization, such
as the ℓ2,1-norm of a matrix [11] including supervised
embedded methods such as multi-task feature selec-
tion [2, 24], spectral feature selection [33] and robust
joint ℓ2,1-Norms [27] and unsupervised embedded fea-
ture selection methods such as discriminative unsuper-
vised feature selection [32]. Through sparsity regular-
ization, feature selection can be embedded in the learn-
ing process.

We can consider each view as a source, in this per-
spective, MVFS involves more than one source and it
is related to multi-source feature selection [34]. How-
ever, multi-view feature selection is different from multi-
source feature selection in two ways: (1) multi-source
feature selection is designed to select features from the
original feature space by integrating multiple sources,
while multi-view feature selection select features from
different feature spaces simultaneously for all views; and
(2) multi-source feature selection ignores the interde-
pendent relations between sources, while multi-view fea-
ture selection exploits the relations among views.

6 Conclusion

In this paper, we study a novel problem of unsuper-
vised feature selection for multi-view data, represented
by heterogeneous feature spaces. Multiple views are
not independent while providing complementary infor-
mation to each other, presenting both challenges and
opportunities to traditional single-view feature selec-

tion. A novel unsupervised feature selection framework,
MVFS, is proposed for multi-view data, which exploits
the relations among views and selects features from
all views simultaneously. Experimental results on two
multi-view datasets from real-world social media web-
sites show that the proposed framework can improve the
performance of both single-view clustering and multi-
view clustering.

Social media produces many types of links, contain-
ing rich information about social media data. We will
investigate how to exploit link information for multi-
view feature selection after we have shown the effective-
ness of multi-view feature selection.
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Appendix

6.1 Proof of Theorem 3.2

Proof. H(Z) can be rewritten as,

H(Z) = Tr
(
Z⊤M+Z+

m∑

i=1

γi(2A
−
i Z

⊤ + Z⊤Z) + Γ+Z⊤Z
)

− Tr
(
Z⊤M−Z+

m∑

i=1

2γiA
+
i Z

⊤ + Γ−Z⊤Z
)

Then we show that the function h(Z, Z̃) is an
auxiliary function of H(Z). By the following inequality,

2a ≤
a2 + b2

b
, ∀ a ≥ 0, b ≥ 0(6.11)

then,

Tr(
∑

i

2A−
i Z

⊤) =
∑

ijl

2A−
i (j, l)Z(j, l)

≤
∑

ijl

(
A−

i (j, l)
Z2(j, l) + Z̃2(j, l)

Z̃(j, l)

)
.(6.12)

It is easy to verify that,

Tr
(
Z⊤M+Z+

m∑

i=1

γiZ
⊤Z+ Γ+Z⊤Z

)

≤
∑

ijl

γi
Z̃(j, l)Z2(j, l)

Z̃(j, l)
+

∑

jl

( (Z̃Γ+)(j, l)Z2(j, l)

Z̃(j, l)

+
(M+Z̃)(j, l)Z2(j, l)

Z̃(j, l)

)

(6.13)

Due to z ≥ 1 + log z, z ≥ 0, we get,

− Tr
(
Z⊤M−Z+

m∑

i=1

2γiA
+
i Z

⊤ + Γ−Z⊤Z
)
≤

−
(∑

jl

(∑

i

2γiAi(j, l)
)
Z̃(j, l)

(
1 + log

Z(j, l)

Z̃(j, l)

)

+
∑

ijl

Γ−(j, l)Z̃(i, j)Z̃(i, k)
(
1 + log

Z(i, j)Z(i, l)

Z̃(i, j)Z̃(i, k)

)

+
∑

ijl

M−(j, l)Z̃(j, i)Z̃(k, i)
(
1 + log

Z(j, k)Z(i, l)

Z̃(j, i)Z̃(j, l)

))

.

(6.14)

By summing over Eqs. (6.12), (6.13) and (6.14), we
can get that h(Z, Z̃) ≥ H(Z) and it is also easy to verify
that h(Z,Z) = H(Z). Thus h(Z, Z̃) is an auxiliary
function of H(Z).

It is easy to verify that the Hessian matrix of
h(Z, Z̃) is a diagonal matrix with positive diagonal
elements, i.e., a positive definition matrix thus h(Z, Z̃) is
a convex function and set the derivative to zero, yielding
the updating rule in Eq. (3.10), which completes the
proof.


