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ABSTRACT

Trust plays a crucial role for online users who seek reliable in-
formation. However, in reality, user-specified trust relations
are very sparse, i.e., a tiny number of pairs of users with
trust relations are buried in a disproportionately large num-
ber of pairs without trust relations, making trust prediction
a daunting task. As an important social concept, however,
trust has received growing attention and interest. Social the-
ories are developed for understanding trust. Homophily is
one of the most important theories that explain why trust re-
lations are established. Exploiting the homophily effect for
trust prediction provides challenges and opportunities. In
this paper, we embark on the challenges to investigate the
trust prediction problem with the homophily effect. First,
we delineate how it differs from existing approaches to trust
prediction in an unsupervised setting. Next, we formulate
the new trust prediction problem into an optimization prob-
lem integrated with homophily, empirically evaluate our ap-
proach on two datasets from real-world product review sites,
and compare with representative algorithms to gain a deep
understanding of the role of homophily in trust prediction.

Categories and Subject Descriptors

H3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering

General Terms

Algorithms, Design, Experimentation

Keywords

Trust Prediction, Homophily Effect, Homophily Regulariza-
tion, Trust Networks, Social Correlation

1. INTRODUCTION
With the pervasive of social media, the explosion of user

generated data makes the information overload problem in-
creasingly severe. Trust, which provides information about
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from whom we should accept information and with whom
we should share information [6], plays an important role
in helping online users collect reliable information. For ex-
ample, users in e-commerce are likely to gather informa-
tion from their trusted users to make decisions. Hence, the
trust mechanism is widely implemented by online service
providers, especially e-commerce websites such as eBay1 and
product review websites like Epinions2.

Recent years witness many trust related online applica-
tions, such as trust-aware recommendation systems [6, 12,
21], finding high-quality user generated content [11, 3] and
viral marketing [19]. However, in reality, the available ex-
plicit trust relations are extremely sparse, and, online trust
relations follow a power law distribution, suggesting that a
small number of users specify many trust relations while a
large proportion of users specify a few trust relations. Trust
prediction is proposed to infer unknown trust relations, and
it is important to address the problem of sparseness in user-
specified trust relations.

Literature on trust prediction is rapidly growing [7, 10, 1,
17], roughly divided into two groups: unsupervised meth-
ods [7, 1] and supervised methods [10, 17]. As illustrated in
Figure 1(a), after extracting features from available sources
and considering the existence of trust as labels, supervised
methods train a binary classifier. However, these methods
have inherent limitations. The huge disproportion of pairs
of users with ( positive samples, labelled as 1 in Figure 1(a))
and without relations (negative samples, labelled as 0 in Fig-
ure 1(a)) makes the classification problem extremely imbal-
anced and the performance of these methods is sensitive to
the sampled negative samples. While unsupervised methods
such as trust propagation [7] are able to infer trust relations
for two indirectly connected users as demonstrated in Figure
1(b.1). However, the power law distribution indicates that
the available trust relations may not be enough to guaran-
tee the success of these methods (u5 in Figure 1(b.1)) [13,
22]. As a social concept, trust has received growing atten-
tion and there are many social theories are developed. Ho-
mophily is one of the most important theories that attempt
to explain why people establish trust relations with each
other [10]. The homophily effect suggests that similar users
have a higher likelihood to establish trust relations. For ex-
ample, people with similar tastes about items are more likely
to trust each other in product review sites. Exploiting that
effect provides a new perspective for trust prediction and
enables us to do advanced research on trust prediction.

1http://www.ebay.com/
2http://www.epinions.com
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Figure 1: Supervised and Unsupervised Trust Prediction

In this paper, we study the problem of trust prediction
by exploiting homophily effect. In essence, we investigate:
(1) how to capture homophily effect in trust relations; and
(2) how to take advantage of that effect for trust predic-
tion. Our solutions to these two challenges result in a new
framework, hTrust, for trust prediction. As demonstrated in
Figure 1(b.2), hTrust does trust prediction in an unsuper-
vised scenario by seeking low-rank representations for users
and their correlations while exploiting homophily effect. Our
main contributions are summarized next.

• Demonstrate the existence of homophily in trust rela-
tions: similar users are more likely to establish trust
relations while trusted users are more similar;

• Provide an approach to exploit homophily effect in
trust relations via homophily regularization;

• Propose an unsupervised framework, hTrust, for the
problem of trust prediction, incorporating low-rank
matrix factorization with homophily regularization; and

• Evaluate hTrust extensively using datasets from prod-
uct review sites to understand the working of hTrust.

The rest of paper is organized as follows. Section 2 de-
scribes the datasets and verifies homophily in trust relations.
Section 3 introduces how to employ the low-rank matrix fac-
torization method for trust prediction. Section 4 introduces
the details on homophily regularization and the proposed
framework. Section 5 presents experimental results and our
observations. Section 6 briefly reviews related work. Section
7 concludes this study with future work.

2. DATA ANALYSIS
We collect two publicly available datasets for this study,

i.e., Epinions and Ciao3. Both sites are product review sites
3These datasets are available from the first author
webpage: http:// www.public.asu.edu/∼jtang20/ dataset-
code/truststudy.htm

Table 1: Statistics of the Datasets
Epinions Ciao

# of Users 8,527 6,262
# of items 26,552 20,416
# of Ratings 225,579 167,320
# of Trust Relations 302,177 109,524
Max # of Trustors 1,285 100
Max # of Trustees 1,805 797
Trust Network Density 0.0042 0.0028
Clustering Coefficient 0.2242 0.2254

where users can rate items by writing reviews and establish
trust networks with their like-minded users.

We filter the users with less than two trustors and items
with less than two ratings, aiming to obtain datasets that
are large enough and have sufficient historical information
for the purpose of evaluation. Some statistics of the datasets
are shown in Table 1. On average, users of Epinions have
35.43 trust relations and 26.45 ratings, while users of Ciao
have 17.49 trust relations and 26.72 ratings.

The distributions of trustors and trustees for each user are
demonstrated in Figure 2. Most users have few trustors and
trustees, while a few users have an extremely high number
of trustors or trustees, suggesting a power law distribution
that is typical in social networks.

Both Epinions and Ciao employ 5-star system to rate
items and the rating distributions are shown in Figure 3(a)
and Figure 3(b) for Epinions and Ciao, respectively. We
note that the majority of ratings are scores of 4 and 5 and
this observation is consistent with previous studies: users
are likely to give positive ratings to items [21].

2.1 Homophily in Trust Relations
Homophily is one of the most important social correlation

theories, observed in many social networks such as following
relations in Twitter [24]. In this subsection, we investigate
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Figure 2: Trustors and Trustees Distributions in

Epinions and Ciao
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Figure 3: Rating Distributions in Epinions and Ciao

homophily in trust relations via studying the correlation be-
tween trust relations and users’ similarity. Specifically, in
the context of product review sites, we ask two questions:

• Are users with trust relations more similar in terms of
their ratings than those without?

• Are users with higher similarity more likely to establish
trust relations than those with lower similarity?

To answer the first question, we have to define users’
rating similarity. In this work, we use the cosine similarity
of users’ rating vectors to measure their rating similarity.
With this definition, we calculate two similarities for each
trust relation, i.e., trust similarity ts and random similarity
rs. For example, for the trust relation ui → uj , indicating
that ui trusts uj , ts is the rating similarity between ui and uj

while rs is the similarity between ui and a randomly chosen
user without trust relations. Finally we obtain two similarity
vectors, st and sr. st is the set of all trust similarities ts

while sr is the set of rs.
We conduct a two-sample t-test on st and sr. The null

hypothesis is H0 : st = sr, and the alternative hypothesis
is H1 : st > sr. For both datasets, the null hypothesis
is rejected at significance level α = 0.01 with p-value of
5.12e−18 and 3.76e−21 in Epinions and Ciao, respectively.
The evidence from t-test suggests a positive answer to the
first question: with high probability, users with trust relations
have higher rating similarity than those without.

For the second question, we want to investigate if users
with higher similarity at time t is more likely to establish
trust relations at time t+1 than those with lower similarity.
We study this problem in Epinions since it provides tem-
poral information when ratings are created and when trust
relations are established. The earliest rating was published
on Jul 05, 1999 and the latest one was on May 08, 2011.
However, temporal information about the trust relations es-
tablished before Jan 11, 2001 is not available from Epinions.
Therefore, we split the whole dataset into 11 timestamps,
i.e., t = {t1, . . . , t11}, where t1 covers the data before Jan
11, 2001, t11 contains data after Jan 11, 2010 and for t2 to
t10, each of them contains data for one year.

For timestamp ti(1 ≤ i ≤ 10), we rank all pairs of users
without trust relations in terms of rating similarity in de-
scending order and then we pick out x% pairs from the top
and x% pairs from the bottom to form a higher-similarity
group, denoted as Gih and a lower-similarity group, repre-
sented by Gil , respectively. Finally we check whether pairs
in Gih are more likely to establish trust relations at ti+1 than
those in Gil . We assume that hi(x) and li(x) are the per-
centages of pairs in Gih and Gil establishing trust relations at
time ti+1 at the ratio of x%, respectively.

Since the percentage of pairs with trust relations is very
small such as 0.0042 in Epinions, we vary x from 0.0001 to
0.01 with an incremental step of 0.0001. For each x%, the
average percentages of pairs establishing trust relations for
higher-similarity groups, h̄x, and lower-similarity groups, l̄x,
over timestamps from t1 to t10, are defined as follows,

h̄x =
1

10

10
∑

i=1

hi(x), l̄x =
1

10

10
∑

i=1

li(x) (1)

Let h = [h̄0.0001, . . . , h̄0.01] and l = [l̄0.0001, . . . , l̄0.01]. With
these two vectors, we also conduct a two-sample t-test on
them. The null hypothesis is H0 : h = l, and the alternative
hypothesis is H1 : h > l. The null hypothesis is rejected
at significance level α = 0.01 with p-value of 7.59e−59 in
Epinions. This supports that users with higher rating sim-
ilarity are more likely to establish trust relations than those
with lower similarity, which answers the second question.

Positive answers to both questions provide evidence of the
existence of homophily in trust relations. With the verifica-
tion of homophily in trust relations, we next study how to
exploit homophily effect for trust prediction.

3. LOW-RANK MATRIX FACTORIZATION

MODEL FOR TRUST PREDICTION
Low-rank matrix factorization method is widely employed

in various applications such as collective filtering [8, 21] and
document clustering [26, 2]. Let u = {u1, u2, . . . , un} be the
set of users where n is the number of users. G ∈ R

n×n is the
matrix representation of trust relations where G(i, j) = 1 if
we observe that ui trusts uj and G(i, j) = 0 otherwise. A
few factors can influence people to establish trust relations
and a user usually establishes trust relations with a small
proportion of u, resulting in G very sparse and low-rank,
hence users can have a more compact but accurate represen-
tation in a low-rank space. The matrix factorization model
seeks a low-rank representation U ∈ R

n×d with d≪ n for u



via solving the following optimization problem,

min
U,V

‖G−UVU
⊤‖2F , (2)

where ‖·‖F is the Frobenius norm of a matrix and V ∈ R
d×d

captures the correlations among their low-rank representa-
tions such as G(i, j) = U(i, :)VU⊤(j, :). To avoid overfit-
ting, we add two smoothness regularizations on U and V,
respectively, into Eq. (2), and then we have,

min
U,V

‖G−UVU
⊤‖2F + α‖U‖2F + β‖V‖2F , (3)

where α and β are non-negative and are introduced to con-
trol the capability of U and V, respectively. Non-negative
constraints are always applied to U and V in Eq. (3) as,

min
U,V

‖G−UVU
⊤‖2F + α‖U‖2F + β‖V‖2F

s.t. U ≥ 0, V ≥ 0, (4)

if the dimensionality of the latent space d is set to the num-
ber of communities, and then the low-rank representation of
users U can be explained as an affiliation matrix, indicating
the community structure of users [20].
There are several nice properties of the matrix factoriza-

tion method [4, 16]: (1) many optimization methods such as
gradient based methods can be applied to find a well-worked
optimal solution, scaled to thousands of users with millions
of trust relations; (2) it has a nice probabilistic interpreta-
tion with Gaussian noise; (3) it is very flexible and allows us
to include prior knowledge such as homophily regularization,
introduced in the next section.

4. MODELING HOMOPHILY FOR TRUST

PREDICTION
In this section, we study how to model homophily ef-

fect in trust prediction under the low-rank matrix factor-
ization model. After introducing homophily regularization,
we present our proposed framework with its optimization
method. To verify the efficiency, we present the time com-
plexity of our framework.

4.1 Homophily Regularization
The analysis in Section 2 suggests the existence of ho-

mophily in trust relations and homophily effect indicates
that users with higher similarity are more likely to establish
trust relations. We define ζ(i, j) as the homophily coeffi-
cient between ui and uj , satisfying: (1) ζ(i, j) ∈ [0, 1]; (2)
ζ(i, j) = ζ(j, i); (3) the larger ζ(i, j) is, the more likely a
trust relation is established between ui and uj . With ho-
mophily coefficient, homophily regularization is to minimize
the following term as,

min
n
∑

i=1

n
∑

j=1

ζ(i, j)‖U(i, :)−U(j, :)‖22, (5)

users close to each other in the low-rank space are more likely
to establish trust relations [18] and their distances in the
latent space are controlled by their homophily coefficients.
For example, ζ(i, j) controls the latent distance between ui

and uj . A larger value of ζ(i, j) indicates that ui and uj

are more likely to establish trust relations according to the
property (3) of homophily coefficient. Thus we force their
latent representations should be as close as possible, while a

smaller value of ζ(i, j) tells that the distance of their latent
representations should be larger.

For a particular user ui, the terms in homophily regular-
ization related to her latent representation U(i, :) are,

n
∑

j=1

ζ(i, j)‖U(i, :)−U(j, :)‖22, (6)

we can see that the latent representation for ui is smoothed
with other users, controlled by homophily coefficient, hence
even for long tail users, with a few or even without any
trust relations, we still can get an approximate estimate
of their latent representations via homophily regularization,
addressing the sparsity problem with traditional unsuper-
vised methods.

After some derivations, we can get the matrix form of
homophily regularization,

1

2

n
∑

i=1

n
∑

j=1

ζ(i, j)‖U(i, :)−U(j, :)‖22

=
1

2

n
∑

i=1

n
∑

j=1

d
∑

k=1

ζ(i, j)
(

U(i, k)−U(j, k)
)2

=
n
∑

i=1

n
∑

j=1

d
∑

k=1

ζ(i, j)U2(i, k)

−
n
∑

i=1

n
∑

j=1

d
∑

k=1

ζ(i, j)U(i, k)U(j, k)

=

d
∑

k=1

U
⊤(:, k)(D−Z)U(:, k)

= Tr(U⊤LU), (7)

where L = D − Z is the Laplacian matrix and D is a
diagonal matrix with the i-th diagonal element D(i, i) =
∑n

j=1 Z(j, i). Z is the homophily coefficient matrix among
n instances, defined as,

Z =











ζ(1, 1) ζ(1, 2) · · · ζ(1, n)
ζ(2, 1) ζ(2, 2) · · · ζ(2, n)

...
...

. . .
...

ζ(n, 1) ζ(n, 2) · · · ζ(n, n)











Ziegler et al. pointed out that there is a strong and sig-
nificant correlation between trust and user preference simi-
larity [27]. Meanwhile, homophily effect indicates that the
more similar two people are, the more likely they will es-
tablish trust relations. In the context of product view sites,
user preference can be inferred from their ratings, hence ho-
mophily coefficient in this work is simply measured via rat-
ing similarity although there are other more sophisticated
measures [15]. For ui, we assume that I(i) is the set of
items ui rates and Rij is the rating to the j-th item from
ui. We investigate the following three widely used rating
similarity measures [12] for homophily coefficient.

• Jaccard’s coefficient (JC): Jaccard’s coefficient is de-
fined as the number of common rated items of two
users divided by the total number of their unique rated
items, formally stated as,

ζ(i, j) = JC(ui, uj) =
|I(i) ∩ I(j)|

|I(i) ∪ I(j)|
. (8)



• Rating similarity (RS): JC counts the common rated
items, however, different users might rate the same
item differently. For example, ui rates the j-th item 5
stars while uj gives 1 star to the j-th item. To capture
different tastes from different users, we define rating
similarity (RS) as,

ζ(i, j) = RS(ui, uj) =

∑

k Rik ·Rjk

√
∑

k R
2
ik

√

∑

k R
2
jk

, (9)

actually RS(ui, uj) is the cosin similarity between the
rating vectors of ui and uj , already discussed in above
section 2.1.

• Pearson Correlation Coefficient (PCC):Different users
may have different rating styles: some users have the
propensity to give higher ratings to all items while oth-
ers probably tend to rate lowly, motivating us to pro-
pose PCC,

ζ(i, j) = PCC(ui, uj)

=

∑

k∈I(i)∩I(j)(Rik − R̄i) · (Rjk − R̄j)
√

∑

k(Rik − R̄i)2
√

∑

k(Rjk − R̄j)2
, (10)

where R̄i denotes the average rate of ui and k belongs
to the subset of items rated by both ui and uj .

From these definitions of similarity functions, JC(ui, uj)
and RS(ui, uj) range within [0, 1], however, PCC(ui, uj)
ranges from −1 to 1. According to the definition of ho-
mophily coefficient, ζ(i, j) belongs to [0, 1]. Therefore, a
mapping function f(x) = x+1

2
is applied to PCC, limiting

the value of PCC(ui, uj) within [0, 1]. It is easy to verify
that JC, RS and PCC satisfy the three properties of ho-
mophily coefficient. Note that in this paper, we donot con-
sider the combinations of different measures for homophily
coefficient, introducing more parameters to prune and leav-
ing it as our future work.

4.2 The Proposed Framework: hTrust
With the definition of homophily regularization, we pro-

pose a framework, hTrust, based on matrix factorization
while exploiting homophily effect for trust prediction. hTrust
is to solve the following optimization problem,

min
U,V

F = ‖G−UVU
⊤‖2F

+ α‖U‖2F + β‖V‖2F + λTr(U⊤LU)

s.t. U ≥ 0, V ≥ 0. (11)

By removing constants in the objective function, Eq. (11)
can be rewritten as,

F = Tr(−2G⊤
UVU

⊤ +UV
⊤
U

⊤
UVU

⊤)

+ αTr(UU
⊤) + βTr(VV

⊤) + λTr(U⊤LU).

(12)

The coupling betweenU andVmakes the problem in Eq. (11)
difficult to find optimal solutions for both U and V simulta-
neously. In this work, we adopt an alternative optimization
scheme [2] for Eq. (11), under which we update U and V

alternatingly with the following updating rules,

U(i, k)← U(i, k)

√

A(i, k)

B(i, k)
,

V(i, k)← V(i, k)

√

[U⊤GU](i, k)

[U⊤UVU⊤U+ βV](i, k)
, (13)

where A and B are defined as,

A = G
⊤
UV +GUV

⊤ + λZU,

B = UV
⊤
U

⊤
UV +UVU

⊤
UV

⊤ + αU+ λDU. (14)

Next we will prove the correctness of the updating rules in
Eq. (13) by showing that the final solution would satisfy the
KKT condition. The Lagrangian function of Eq (11) is:

LF = Tr(−2G⊤
UVU

⊤ +UV
⊤
U

⊤
UVU

⊤)

+ αTr(UU
⊤) + βTr(VV

⊤) + λTr(U⊤LU)

− Tr(Λ1U)− Tr(Λ2V), (15)

where Λ1 and Λ2 are Lagrangian multipliers for non-negativity
of U and V, respectively.

Then we have,

∂LF

∂U
= 2

(

−G
⊤
UV −GUV

⊤ +UV
⊤
U

⊤
UV

+UVU
⊤
UV

⊤ + αU+ λLU
)

− Λ⊤

1 ,

∂LF

∂V
= 2

(

−U
⊤
GU+U

⊤
UVU

⊤
U+ βV

)

− Λ⊤

2 . (16)

The KKT complementary condition is,

U(i, k)Λ1(i, k) = 0, ∀ i ∈ [1, n], k ∈ [1, d]

V(i, k)Λ2(i, k) = 0 ∀ i, k ∈ [1, d]. (17)

Let ∂LF

∂U
= 0 and ∂LF

∂V
= 0,

−G
⊤
UV −GUV

⊤ +UV
⊤
U

⊤
UV

+UVU
⊤
UV

⊤ + αU+ λLU = Λ1,

−U
⊤
GU+U

⊤
UVU

⊤
U+ βV = Λ2. (18)

Using the KKT complementary condition in Eq. (17), we
have,

[−G⊤
UV −GUV

⊤ +UV
⊤
U

⊤
UV

+UVU
⊤
UV

⊤ + αU+ λLU](i, k)U(i, k) = 0,

[−U⊤
GU+U

⊤
UVU

⊤
U+ βV](i, k)V(i, k) = 0. (19)

It is easy to verify that the updating rules in Eq. (13) do
satisfy the above KKT condition. Furthermore, since G, Z,
D are nonnegative, so U and V are nonnegative during the
updating process. Until now, we prove the correctness of
the updating rules in Eq. (13). It can be proven that the
updating rules in Eq. (13) are guaranteed to converge. Since
the proof process is similar to that in [2], to save space, we
omit the detailed proof of the convergence of the updating
rules in Eq. (13).

4.3 The Algorithm and Time Complexity
The detailed algorithm for the proposed framework, hTrust,

is shown in Algorithm 1. We construct homophily coefficient
matrix in line 1. From line 4 to line 9, we alternatingly up-
date U and V until achieving convergence. Note that in
practice, Algorithm 1 will stop when reaching predefined



maximal iterations or there is little change for the objec-
tive function value. After obtaining the optimal U and V,
G̃ = UVU⊤ is the new low-rank representation of G. Since
U and V are non-negative, the new low-rank representation
of the trust network G̃ is non-negative. The likelihood of ui

and uj to establish trust relation is indicated by G̃(i, j)4.

Algorithm 1 The Framework of Trust Prediction with Ho-
mophily Regularization

Input: G, α, β, λ
Output: Ranking list of pairs of users

1: Construct the Homophily Coefficient Matrix Z and D

2: Initialize U randomly
3: Initialize V randomly
4: while Not convergent do
5: Set A = G⊤UV +GUV⊤ + λZU
6: Set B = UV⊤U⊤UV +UVU⊤UV⊤ + αU+ λDU

7: for i = 1 to n do

8: for k = 1 to d do

9: Update U(i, k)← U(i, k)
√

A(i,k)
B(i,k)

10: end for

11: end for

12: for i = 1 to d do

13: for k = 1 to d do

14: Update V(i, k)← V(i, k)
√

[U⊤GU](i,k)

[U⊤UVU⊤U+βV](i,k)

15: end for

16: end for

17: end while

18: Set G̃ = UVU⊤

19: Ranking pairs of users (e.g., 〈ui, uj〉) according to G̃

(e.g., G̃(i, j)) in a descending order.

At each iteration, the high cost of the updating rules for U
and V may limit the applications of the proposed algorithm,
so it is essential to analyze the time complexity and find an
efficient implementation of Algorithm 1.
First we consider the time complexity of A = G⊤UV +

GUV⊤+λZU. The matrix representation of trust network
G is very sparse thus G⊤UV and GUV⊤ can be computed
in O(nd2). In our studied datasets, Z is very sparse (by con-
sidering the top similar users, we also can obtain a sparse
homophily coefficient matrix Z for other datasets). There-
fore, the time complexity of λZU is O(nd2).
For B = UV⊤U⊤UV +UVU⊤UV⊤ + αU + λDU, we

can calculate UV⊤U⊤UV by either,

(((UV
⊤)U⊤)U)V, or U(V⊤((U⊤

U)V)) (20)

The former takes O(n2d) operations, while the latter costs
O(nd2). As d ≪ n, the latter is much more efficient. Simi-
larly, UVU⊤UV⊤ should be calculated as

U(V((U⊤
U)V⊤)). (21)

Note that U⊤U is only calculated once for UV⊤U⊤UV

and UVU⊤UV⊤. Since D is a diagonal matrix, the time
complexity of DU is O(nd).
Due to the sparsity of G, U⊤GU in the updating rule for

V costs O(nd2). U⊤UVU⊤U should be computed as,

(U⊤
U)V(U⊤

U) (22)

4The code is available at http://www.public.asu.edu/
∼jtang20/datasetcode/hTrust.m
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Figure 4: Separation of the dataset. A is the set

of pairs with trust relations, sorted in chronological

order, x% of which is chosen as old trust relations

O and the remaining 1 − x% as new trust relations

N to predict, and B is the set of pairs without trust

relations.

whose time complexity is O(nd2).
In summary, with above implementations, the overall time

complexity for Algorithm 1 is #iterations ∗O(nd2).

5. EXPERIMENTS
In this section, we conduct experiments to evaluate the

proposed framework. After introducing the experiment set-
tings and the evaluation metric, we compare different trust
prediction methods, and then study the effect of homophily
regularization and different measures of homophily coeffi-
cient on the proposed framework.

5.1 Experiment Settings
The experiment setting of the dataset is demonstrated in

Figure 4. A = {〈ui, uj〉|G(i, j) = 1} is the set of pairs of
users with trust relations and B = {〈ui, uj〉|G(i, j) = 0} is
the set of pairs of users without trust relations. The pairs
in A are sorted in chronological order in terms of the time
when they established trust relations. We choose x% of
A as old trust relations O and the remaining 1 − x% as
new trust relations N to predict. We remove trust relations
in N by setting G(i, j) = 0, ∀〈ui, uj〉 ∈ N and the new
representation ofG is the input of each predictor. x is varied
as {50, 55, 60, 65, 70, 80, 90}.

We follow the common metric for unsupervised trust pre-
diction in [9] to evaluate the performance of trust prediction.
In details, each trust predictor ranks pairs in B ∪ N in de-
creasing order of confidence and we take the first |N | pairs
as the set of predicted trust relations, denoting as C. Then
the prediction accuracy (PA) can be calculated as,

PA =
|N ∩ C|

|N |
(23)

where | · | denotes the size of a set.

5.2 Comparison of Different Trust Predictors
In this subsection, we compare the proposed framework

with various baseline methods as follows,

• TP: the trust relations are inferred through trust prop-
agation. Four atomic propagations are utilized in this



50% 55% 60% 65% 70% 80% 90%

TP 0.1852 0.1897 0.1897 0.1845 0.1790 0.1663 0.1558

RS 0.1319 0.1230 0.1110 0.1029 0.0869 0.0813 0.0598

PCC 0.1160 0.1019 0.0884 0.0811 0.0614 0.0610 0.0469

JC 0.0940 0.0858 0.0725 0.0637 0.0480 0.0336 0.0279

simTP 0.2076 0.2105 0.2057 0.2011 0.1982 0.1857 0.1702

MF 0.2145 0.2121 0.2102 0.2057 0.1944 0.1837 0.1688

triNMF 0.2142 0.2129 0.2134 0.2064 0.1958 0.1875 0.1692

hTrust 0.2569 0.2517 0.2434 0.2326 0.2268 0.2072 0.1900

Random 0.0027 0.0026 0.0025 0.0024 0.0017 0.0015 0.0016

HoTp+JC 0.2382 0.2301 0.2227 0.2131 0.2019 0.1871 0.1732
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Figure 5: Performance Comparison for Different

Trust Predictors in Epinions

predictor, i.e., direct propagation, co-citation, trans-
pose trust and trust coupling [7].

• RS: RS ranks the pairs of users via their rating simi-
larity defined in Eq. (9).

• PCC: PCC ranks the pairs of users through Pearson
Correlation Coefficient as in Eq. (10).

• JC: the likelihood of a pair of users to establish a trust
relation is computed by Jaccard’s coefficient on their
rated items shown in Eq. (8).

• simTP: the score of a potential trust relation is es-
timated via a combination of trust propagation and
users’ rating similarity, following the basic ideas in [5,
1]. We use RS to measure the rating similarity.

• MF: it conducts a matrix factorization on the matrix
representation of trust relations [26].

• triNMF: triNMF is a variant of our proposed method
without homophily regularization as shown in Eq. (4).

Note that we do not compare our proposed framework
with the methods proposed in [10, 17, 13] because: (1) these
methods need additional data sources to work such as users’
interaction activities; (2) homophily regularization is easy to
incorporate into these methods to improve prediction per-
formance through graph regularization; and (3) these meth-
ods are supervised methods while our proposed framework
is unsupervised learning. We would like to leave the work of
exploiting homophily effect for supervised methods as future
work since we focus on unsupervised trust prediction in this
work.
The parameters in all methods are determined through

cross validation. For hTrust, we choose RS to measure
the homophily coefficient and other parameters are set as
α = β = 0.01, λ = 10, d = 100. More details about the ef-
fect of homophily regularization and measures of homophily

50% 55% 60% 65% 70% 80% 90%

TP 0.1374 0.1371 0.1345 0.1306 0.1231 0.1145 0.1027

RS 0.1480 0.1420 0.1240 0.0990 0.0920 0.0680 0.0590

PCC 0.1110 0.0940 0.0820 0.0640 0.0500 0.0330 0.0220

JC 0.0490 0.0410 0.0280 0.0270 0.0240 0.0170 0.0120

simTP 0.1685 0.1671 0.1657 0.1599 0.1513 0.1351 0.1328

MF 0.1564 0.1559 0.1502 0.1489 0.1424 0.1321 0.1185

triNMF 0.1714 0.1703 0.1691 0.1635 0.1546 0.1372 0.1342

hTrust 0.2220 0.2193 0.2158 0.2082 0.1966 0.1749 0.1650

Random 0.0022 0.0020 0.0014 0.0017 0.0010 0.0009 0.0008

HoTp+JC 0.1967 0.1941 0.1865 0.178 0.1639 0.1441 0.1319
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Figure 6: Performance Comparison for Different

Trust Predictors in Ciao

coefficient on hTrust will be discussed in later subsections.
The comparison results are demonstrated in Figure 5 and
Figure 6 for Epinions and Ciao, respectively.

The first observation is that with the increase of x, the
performance of all methods reduces. In general, with more
old trust relations , we should obtain better performance for
the same set of new trust relations. However, in our experi-
ments, the sets of new trust relations are different for differ-
ent x%s and the difficulty of inferring new trust relations,
buried in a large amount of pairs without trust relations,
increases with the increase of x, supported by the trend of
the performance of randomly guessing. To clarify the con-
fusion, we conduct a validation experiment by fixing the set
of new trust relations to 10% and the experimental results
are shown in Table 2. Note that we only show the results of
TP,MF and hTrust, since other methods are independent on
trust networks (e.g., JC) or are variants of selected methods
(e.g., triNMF is a variant of hTrust). It is clear that with
the increase of new trust relations, the performance does in-
crease in our expectation. We also note that when x is from
90 to 50, hTrust is more stable than both TP and MF. On
average, the performance of hTrust, TP and MF relatively
reduces 5.70%, 8.71% and 8.64% in Epinions, respectively,
and 7.81%, 11.28% and 11.58% in Ciao, respectively. With
homophily regularization, hTrust is more robust to the spar-
sity problem of trust prediction.

We have the following observations:

• The performance of RS, PCC and JC is much better
than that of randomly guessing, further demonstrating
the existence of homophily in trust relations. We also
note that RS and PCC obtain better performance than
JC. It supports that users rating the same items might
have very different preferences.

• simTP, combining both trust propagation and rating
similarity, outperforms both TP and similarity-based
methods (RS, PCC, JC). We believe that rating infor-



Table 2: Performance of Different Predictors when

the Percentage of Testing Trust Relations is Fixed

to 10%
Datasets TP MF hTrust

Epinions

50% 0.1201 0.1291 0.1578
55% 0.1327 0.1401 0.1689
60% 0.1335 0.1454 0.1751
65% 0.1437 0.1555 0.1799
70% 0.1473 0.1611 0.1821
80% 0.1521 0.1643 0.1872
90% 0.1558 0.1688 0.1900

Ciao

50% 0.0831 0.0988 0.1450
55% 0.0902 0.1025 0.1496
60% 0.0943 0.1079 0.1537
65% 0.0957 0.1109 0.1591
70% 0.0983 0.1132 0.1613
80% 0.1009 0.1163 0.1649
90% 0.1027 0.1185 0.1650

mation provides complementary information beyond
trust networks for trust prediction.

• Comparing MF and triNMF with TP , we note that
low-rank matrix factorization methods obtain better
performance than trust propagation.

• Our proposed framework obtains better performance
than triNMF. As mentioned above, triNMF is a variant
of the proposed framework without homophily regular-
ization, hence, these results directly demonstrate that
homophily regularization can improve the performance
of trust prediction. Furthermore, it also outperforms
simTP, which also takes advantage of both existing
trust relations and rating information, suggesting the
effectiveness of homophily regularization in terms of
capturing rating information.

In summary, with the help of homophily regularization,
the proposed framework always outperforms all the base-
line methods and its variant. In the next subsection, we
investigate more details about the impact of homophily reg-
ularization on the proposed framework.

5.3 Impact of Homophily Regularization
The parameter λ is introduced to control the contribution

from homophily regularization for our proposed framework
hTrust. Therefore we investigate the impact of homophily
regularization via analyzing how the changes of λ affect the
performance of hTrust in terms of the trust prediction accu-
racy. We vary the value of λ as {0, 0.01, 0.1, 0.3, 0.5, 0.7, 1,
10, 1e2} and the results are shown in Figure 7(a) and Fig-
ure 7(b) for Epinions and Ciao, respectively.
In general, with the increase of λ, the performance in

Epinions and Ciao shows similar patterns: first increasing,
reaching its peak value and then degrading rapidly. These
patterns can be used to determine the optimal value of λ for
hTrust in practice. In particular, it can be observed,

• when λ is increased from 0, eliminating the impact of
homophily regularization on hTrust, to 0.01, the per-
formance improves a lot, suggesting that homophily
regularization can significantly improve the performance
of trust prediction.
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Figure 7: Effect of Homophily Regularization

• hTrust achieves its best performance when λ = 10, fur-
ther demonstrating the importance of homophily reg-
ularization in hTrust.

• From λ = 10 to λ = 1e2, the performance decreases
rapidly. When λ is very large, homophily regulariza-
tion dominates the learning process and the learned
latent presentation is inaccurate. For example, when
λ → +∞, we will obtain a trivial solution: all U(i, :
)(1 ≤ i ≤ n) are exactly the same.

In summary, an appropriate combination of matrix factor-
ization and homophily regularization can greatly improve
the performance of trust prediction.

5.4 Impact of Homophily Coefficient
Homophily coefficient ζ(i, j) controls the distance of ui

and uj in the latent space. In this paper, we employ three
widely used measures for homophily coefficient, i.e., Jac-
card’s coefficient, Rating Similarity and Pearson Correla-
tion Coefficient. To investigate the impact from homophily
coefficient, we try to answer the following three questions
through experiments,

• Among JC, RS and PCC, which measure of homophily
coefficient is more effective?

• What is the performance of our proposed framework
if we discard homophily coefficients by giving equal
homophily coefficients to all pairs of users?

• If we randomly assign homophily coefficients to all
pairs of users, what is the performance of our proposed
framework hTrust?



Table 3: Different Measures of Homophily Coefficient. Note that ζ(i, j) = random means we randomly assign

homophily coefficients ,while ζ(i, j) = 1 indicates that homophily coefficients for all pairs of users are set to 1
Datasets ζ(i, j) = JC(i, j) ζ(i, j) = PCC(i, j) ζ(i, j) = RS(i, j) ζ(i, j) = random ζ(i, j) = 1

Epinions

50% 0.2382 0.2415 0.2569 0.2172 0.2192
55% 0.2301 0.2354 0.2517 0.2153 0.2208
60% 0.2227 0.2285 0.2434 0.2027 0.2071
65% 0.2131 0.2196 0.2326 0.1907 0.1966
70% 0.2019 0.2073 0.2268 0.1799 0.1856
80% 0.1871 0.1937 0.2072 0.1558 0.1697
90% 0.1732 0.1753 0.1900 0.1433 0.1498

Ciao

50% 0.1967 0.2098 0.2220 0.1630 0.1742
55% 0.1941 0.2041 0.2193 0.1728 0.1721
60% 0.1865 0.2069 0.2158 0.1585 0.1627
65% 0.1780 0.1958 0.2082 0.1591 0.1613
70% 0.1639 0.1820 0.1966 0.1479 0.1491
80% 0.1441 0.1618 0.1749 0.1242 0.1304
90% 0.1319 0.1502 0.1650 0.1214 0.1268

Table 3 demonstrates the performance of the proposed
framework with different measures of homophily coefficient.
In the table, ζ(i, j) = random means we randomly assign
homophily coefficients within [0, 1] ,while ζ(i, j) = 1 indi-
cates that homophily coefficients for all pairs of users are
set to 1. From the table, we observe answers to the ques-
tions proposed at the beginning of this subsection:

• RS obtains the best performance among the three mea-
sures of homophily coefficient, i.e., JC, RS and PCC.
We also note that RS and PCC always obtain better
performance than JC. It suggests that different users
might have different tastes to the same item.

• Compared to JC, RS and PCC, the performance de-
grades when we assign equal homophily coefficient,
i.e.,ζ(i, j) = 1. JC, RS and PCC can improve the
performance of trust prediction.

• Among the measures of homophily coefficient, most of
the time, random assignment of homophily coefficients
obtains the worst performance. Homophily coefficient
should not be a random value.

After answering the three questions, we can conclude that
(1) JC, RS and PCC can help our framework obtain better
performance; (2) we cannot either discard homophily coeffi-
cient from our framework or simply use some random values
to denote homophily coefficients.

6. RELATED WORK
Trust plays an important role in helping online users col-

lect reliable information and trust prediction, inferring un-
known trust relations among pairs of users, attracts more
and more attention in recent years [7, 5, 14, 10, 17, 13, 1].
Existing trust prediction methods can be roughly divided
into two categories: unsupervised trust prediction [7, 5, 14]
and supervised trust prediction [10, 17, 13].
Most existing unsupervised trust prediction methods are

based on trust propagation. Several atomic propagations are
proposed in [7] such as direct propagation, cocitation prop-
agation, transpose propagation and trust coupling propa-
gation. It also discusses the propagation of distrust and
develop a formal framework of trust propagation schemes.

Various properties of trust such as transitivity, composabil-
ity and asymmetry are discussed by Golbeck in [5] and based
on these properties, algorithms for inferring binary and con-
tinuous trust values from trust networks are proposed. The
continuous trust inference algorithm, TidalTrust, leverages
the path length from the source to sink and various prop-
erties of continuous ratings [5]. Trust propagation based
methods strongly depend on existing trust relations among
users and they might fail when existing trust relations are
sparse. In [1], rating similarity is exploited to enrich tradi-
tional trust propagation methods. This work demonstrates
that predicting trust is more successful for pairs of users that
are similar to each other if we combine the topology of the
trust network with rating similarity.

Supervised trust prediction methods first construct fea-
tures from available sources and then train a binary classi-
fier based on these features by considering the existence of
trust relations as labels. In [10], a taxonomy is developed
to systematically organize an extensive set of features for
predicting trust relations. The features include user and in-
teraction factors. User factors contain rater-related, writer-
related, or commenter-related. The latter captures various
interactions between the users. Viet-An Nguyen et al. [17]
proposes various trust prediction models based on a well-
studied Trust Antecedent Framework used in management
science, capturing the three following factors: ability, benev-
olence and integrity. Each factor is approximated through
a set of quantitative features. For example, the features for
integrity are called trustworthiness, equal to the number of
trust statements the user receives while ability are the fea-
tures that compute the average rating given by a rater to the
reviews written by a particular reviewer and the number of
reviews rated by the rater. In [13] , various features based on
writer-reviewer interactions are extracted and used in per-
sonalized and cluster-based classification methods. As men-
tioned above, these methods have inherent limitations. The
huge disproportion of pairs of users with (positive samples)
and without relations (negative samples) makes the classifi-
cation problem extremely unbalanced and the performance
of these methods are sensitive to the sampled negative sam-
ples [23]. Trust has multiple facets and people place trust
differently on different people [21]. Considering heteroge-
neous trust relations and their evolution can improve vari-



ous trust-related applications such as trust prediction and
trust-aware recommendation [22].

7. CONCLUSION
In this paper, we study the problem of exploiting ho-

mophily effect for trust prediction. First we conduct ex-
periments on datasets from real-world product review sites
to demonstrate the existence of homophily in trust relations.
Homophily regularization is then introduced to capture ho-
mophily effect in trust relations. An unsupervised frame-
work is proposed, incorporating low-rank matrix factoriza-
tion and homophily regularization. Extensive experiments
are conducted to evaluate the proposed framework on real-
world trust relation datasets and the experimental results
demonstrate the effectiveness of our proposed framework as
well as the role of homophily regularization for trust predic-
tion.
There are several interesting directions for future work. In

the current work, homophily regularization is utilized under
an unsupervised scenario. As mentioned above, homophily
regularization can be easily extended for supervised learning
methods via graph regularization. Hence one direction of our
future work is to examine the effect of homophily regulariza-
tion on supervised trust predictors. Previous work demon-
strated that homophily is widely observed in other relations
such as following relations in Twitter; another direction of
our future work is to generalize homophily regularization to
other relations. Users might change their preferences over
time, indicating their homophily coefficients might evolve.
In the future, we will further study homophily regulariza-
tion with temporal dynamics for trust prediction.
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