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Abstract—Social media expands the ways people communicate
with each other. On a popular social media website, a user
typically has hundreds of contacts (or friends) on average. As a
person’s social network grows, friend management is increasingly
important for effective communications. Often, one can only
afford to maintain close friendship in a small scale due to
limited time and other resources. In other words, the majority
of one’s connections are so-so friends and do not hold strong
influence on the user. One approach resorts to network denoising,
by which unimportant connections are removed as noise. We
study the challenges of network denoising in social media and
how we can leverage a variety of social media information to
denoise the links. We formulate the network denoising task as
an optimization problem, and show the efficacy of our network
denoising approach and its scalability experimentally in the
domain of behavior inference.

I. INTRODUCTION

Social media extends the physical boundary of user rela-
tionship to a new level. The total time spent on social media
in the U.S. across PC and mobile devices has increased by 37
percent from 88 billion minutes in July 2011 to 121 billion
minutes in July 2012 [1]. As reported by the Pew Internet
Project in 2012, two-thirds of online adults use social network
sites and 83% of teens and young adults are a member of
at least one social network [2]. The increased participation in
social media brings new challenges for managing friends and
studying user behavior among others.

In the world of social media, the differences of time and
location disappear, which allows one to have an inordinate
number of friends. On average, a Facebook user has 190
friends [3], and a Twitter user has 208 followers1. When
the circle of one’s friendship grows, there is an increasing
need for friend management or even “unfriending”2. Too many
messages displayed on a user’s wall prevent effective commu-
nication between a user and his close friends. Research by
Robin Dunbar [4] indicates that 100 to 150 is the approximate
natural group size in which everyone can really know each
other, because “our minds are not designed to allow us to have
more than a very limited number of people in our social world.
The emotional and psychological investments requiring a close
relationship are considerable, and the available emotional
capital we have is limited.”

Though one can have hundreds of online friends, most
of them are so-called “Facebook” friends, as being a friend
does not incur any social capital. When “Facebook” friends

1http://www.beevolve.com/twitter-statistics/#e1
2http://www.nytimes.com/2010/10/24/fashion/24Studied.html

become rampant in social media sites, we face a new problem
of information overloading3. A recent study shows that Twitter
users have a very small number of friends compared to
the number of followers and followees they declare [5]. In
summary, the social network is comprised of valuable friends,
casual friends, or event friends who are deemed to be treated
differently.

In this paper, we propose to denoise an individual’s social
networks by removing noisy links. The potential benefits
include the following. First, managing contacts differently
according to the closeness to an individual. For example, the
method can be applied automatically to group contacts; and
we can apply different privacy levels to groups for informa-
tion sharing. Second, reducing noisy links in social networks
could benefit a wide range of applications, such as behavioral
prediction, community detection, influence propagation, viral
marketing, etc. However, the identification of noisy links in
social media is a challenging task. In social media websites,
a connection between two users provides limited information
indicating the tie strength, and online information such as
profiles can be incomplete. Third, offline behaviors (e.g.,
communication between two persons) are usually unavailable
in social media.

In this work, we attempt to integrate multiple types of
social interactions for denoising social networks. The rest of
the paper is organized as follows. We define the problem in
Section 2 and present the technical details in Section 3. The
experimental evaluations are given in Section 4, followed by
some related work in Section 5. We conclude the work and
future directions in Section 6.

II. PROBLEM STATEMENT

A social network can be represented by a graph. Let
G = (U,E) be a social network, with U = {u1, u2, . . . , un}
representing the set of n users, and E the set of connections
(links) between users. The social network G is assumed to be
undirected, and its adjacency matrix A is defined as

Aij =

{
1 ui and uj are connected
0 otherwise (1)

Interaction refers to an activity between a user and another
user or an item. We study three types of interactions in
this paper: forming connections with other users (Linking),

3http://www.readwriteweb.com/archives/how many friends is too many.
php
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Fig. 1. Network Denoising in X’s Neighborhood

subscribing to tags (Tagging), and making comments (Com-
menting). Linking information is contained in the adjacency
matrix A ∈ {0, 1}n×n. Tagging matrix T ∈ Rt×n represents
the subscription relationship between users and tags, where t
is the number of unique tags. Commenting matrix C ∈ Rn×n

represents the number of comments that a user leaves on
another user’s wall or homepage.

The neighborhood of user ui is his immediate social
network. Thus, the size of the neighborhood is the node degree
di of ui. For each user, the i-th column of an interaction matrix
corresponds to user feature fi (1 ≤ i ≤ n). For example, fi
can represent the neighbors ui has, the tags ui subscribes, and
users who left comments on his wall, w.r.t Linking, Tagging,
and Commenting. Neighborhood feature Ni (1 ≤ i ≤ n) is
a matrix whose j-th column Ni(:, j) corresponds to the j-th
neighbor of user i in terms of their user features.

The tie strength between two users is related to many
factors, such as user similarity, user connectivity, etc. [6]. The
homophily principle in social networks suggests that similarity
breeds connections [7]. E.g., a higher degree of embeddedness
(i.e., common friends) suggests stronger tie strength [8]; like-
minded users tend to use similar tags (tagging) [9]. These
factors and properties of social media networks can help
remove unimportant or random friends. We formulate this
network denoising problem as an optimization problem of tie
strength estimation as follows:

min
wi≥0

n∑
i=1

(
‖Niwi − fi‖

2

2
+ λ‖wi‖1

)
, (2)

where wi ≥ 0 represents the weight vector (tie strength)
between ui and his social network, with each element w

j
i

indicating the weight between ui and his friend j. Intuitively,
a larger weight between two users means they are more close
or they share more similarity. Therefore, wi can be utilized
for denoising ui’s social network. In this work, we remove the
link between a user and his friend for denoising, as long as the
learned corresponding weight between them is 0. λ is used to
balance the trade-off between the sparsity of tie strength vector
and the accuracy of approximation.

The intuitive interpretation of network denoising can be
illustrated in Figure 1. It demonstrates the neighborhood of
user X before (Left) and after (Right) denoising. In both
graphs, solid lines and dashed lines represent strong and weak
ties between the users and his social network. After denoising,
the three dashed connections are removed, while the two strong
ties are kept.

Existing methods of ranking edges include Edge Centrality,
PageRank for edge selection [10], etc. However, these methods

are inappropriate for network denoising because (1) they are
computed on the whole graph, but denoising is essentially a
local processing task involving user ui and his neighbors; (2)
a local method is more agile at handling local changes such as
localized updating as a social network evolves: users join and
leave, links form and dissolve. (3) A global method is sensitive
to the structural variation of a graph. For example, removing a
small number of links in the graph may significantly affect the
global ranking. The proposed approach operates locally, avoid-
ing unnecessary updates. (4) Edge ranking tends to change
the structure of a social network after removing lowly ranked
edges, resulting in singleton users. The proposed approach
removes one’s noisy links to compact his social network.

III. METHODOLOGY

The tie strength estimation defined in Eq (2) solves a
quadratic convex problem with constraints. There are so-
phisticated methods of solving the constrained least square
problems [11], [12], [13]. Solving Eq. (2) can be achieved
by solving a series of sub-problems:

min ‖Niwi − fi‖
2

2
+ λ‖wi‖1,

s.t. wi ≥ 0
(3)

There are several efficient solvers for above problem [14], [15],
[16], [17]. In the following experiments, we use the state-of-
the-art solver developed by Liu et al. [17].

Different types of interactions, e.g., sharing common
friends, using similar tags, and commenting can improve
the closeness between two users; however, it may contribute
differently to the tie strengths between two users. Information
obtained from one type of interaction is often incomplete or
noisy, such as one’s preference in making friends over using
tags and commenting. In social media, multiple interactions
can be complementary in clarifying user relationships. A
novelty of our proposed solution is to enable the integration
of different interactions efficiently.

A. Integrating Multiple Interactions

For a given user ui, we first consider two types of inter-
actions and demonstrate how to integrate them. Let N1

i and
N2

i be the two neighborhood features corresponding to two
interactions, f1

i and f2

i be the user features, and introducing an
all ones vector e = (1, 1, . . . , 1)�, the tie strength estimation
problem can be rewritten,

min
wi≥0

n∑
i=1

(
α2

1
‖N1

i wi − f1

i ‖
2

2
+ α2

2
‖N2

i wi − f2

i ‖
2

2
+ λe�wi

)
(4)

Each sub-problem of integrating two interactions can be shown
to be equivalent to solve a new constraint least square problem,

α2

1
(N1

i wi − f1

i )
�(N1

i wi − f1

i )+

α2

2
(N2

i wi − f2

i )
�(N2

i wi − f2

i ) + λe�wi

=

∥∥∥∥
(

α1N
1

i

α2N
2

i

)
wi −

(
α1f

1

i

α2f
2

i

)∥∥∥∥
2

2

+ λe�wi,

(5)

where α1 and α2 weighs the importance between the two
interactions. Combining all users together, Eq. (4) can be
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rewritten as

min
wi≥0

n∑
i=1

(∥∥∥∥
(

α1N
1

i

α2N
2

i

)
wi −

(
α1f

1

i

α2f
2

i

)∥∥∥∥
2

2

+ λe�wi

)
(6)

Eq. (6) can be generalized to include multiple interactions,

min
wi≥0

n∑
i=1

(
‖Niwi −Fi‖

2

2 + λe�wi

)
, (7)

where Ni and Fi are obtained by stacking � interactions
together, and are given by

Ni = (α1N
1

i

�
, α2N

2

i

�
, . . . , α�N

�
i

�
)�

Fi = (α1f
1

i

�
, α2f

2

i

�
, . . . , α�f

�
i

�
)�

(8)

The weighting parameters (α1, α2, . . . , α�) can be determined
by prior knowledge or cross-validation. However, in this paper,
we do not differentiate the importance of different interactions
and set them to 1.

Integrating multiple interactions can be interpreted as
stacking the neighborhood features and user features, and
separately solving a larger least square problem with non-
negative and sparsity constraints.

B. Time Complexity Analysis

If the matrices are not sparse, the time complexity of the
constrained least square problem defined in Eq. (3) is O(c�idi),
where c is the largest eigenvalue of matrix NiN

�
i , and �i and

di are the dimensions of matrix Ni [17]. Due to the sparsity of
interaction matrices studied in this paper, the time complexity
becomes O(μi), where μi is the number of non-zero entries
in matrix Ni and it has the same order with dimension di in
social networks [18]. It has been observed that online social
networks typically follow a power law degree distribution,

p(x) = (1− α)x−α, x ≥ xmin ≥ 1 (9)

where α is the exponent of the distribution and its value often
falls between 2 and 3 in small world networks [19].

n∑
i=1

di

≈ n

∫ ∞

xmin

xp(x)dx

= n ·

∫ ∞

xmin

(1 − α)x1−αdx

= n ·
α− 1

α− 2
· x2−α

min

(10)

Discarding constant terms, the time complexity for solving
Eq. (2) is O(n). Considering � types of interactions, the total
time complexity is given by O(n�), which is thus linear with
respect to the number of users in a social network.

TABLE I. STATISTICS OF DIFFERENT NETWORK DATA

Dataset BlogCatalog Flickr BlogMI
Users 8,797 8,465 6,069
Edges 290,059 195,847 523,642
Unique Tags 7,418 7,303 5,161
Classes 59 169 70
Density 7.5 × 10

−3 5.5 × 10
−3 2.8 × 10

−2

Avg. Degree 66 46 173

IV. EXPERIMENTAL EVALUATION

We now perform experiments to verify if the proposed
approach can achieve its designed purposes. We use behavior
inference as evaluation task. We want to see if, after denoising,
(1) we can maintain or improve the performance, (2) make
the social media networks more compact, and (3) accomplish
the same behavior inference task faster. We first introduce
the social media datasets and evaluation approach, and then
embark on effectiveness and efficiency studies, finally discuss
the limitations of denoising.

A. Social Media Datasets

Three datasets from popular social media websites are
employed: BlogCatalog, Flickr, and BlogCatalog Multi-
Interaction (BlogMI), each containing more than one type of
interaction. The first two datasets contain linking and tagging
information and are obtained from Tang et al. [20]. The third
dataset is crawled to include more interactions. Table I shows
the statistics of the three datasets, with detailed descriptions
presented below:

BlogCatalog is a blog directory where users can register
their blogs under predefined categories. When a new blog is
registered, the owner is asked to specify the major category and
a sub category in a hierarchical structure, and specify several
tags to describe the main topics of the blog. It contains linking
and tagging information with 8, 797 users and 7, 418 tags.

Flickr is an image sharing website in which users can
specify tags for each photo they upload. Different from
BlogCatalog, users can join various groups (e.g. sports clubs,
special interest groups, etc) on Flickr. The dataset has 8, 465
users and 7, 303 unique tags with both linking and tagging
information. The connections on Flickr are directional and we
simply ignore the direction of the edges, i.e., two users are
connected if there is a link between them.

BlogMI is crawled to include multiple interactions between
users: linking, tagging, and commenting. Commenting refers
to when a user leaves comments on another user’s wall or
homepage. Tags used by less than 10 persons and users who
have no tag usage are excluded, we finally obtained a dataset
with 6, 069 users and 5, 161 unique tags.

B. Evaluation Approach

Since there is no ground truth about links being noise or
not, we verify indirectly: comparing the performance of be-
havioral inference before and after denoising. The hypothesis
is that removing unimportant or irrelevant links will not affect
the performance of inferring user behaviors. Intuitively, if we
can successfully achieve network denoising, we should have
similar, if not better, performance with more compact network.
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Since the category information on BlogCatalog or user
groups on Flickr imply their interests (behaviors as class
labels), they are used as ground-truth labels. We first generate
two user-user networks based on user friendships. The first
one is constructed with the original user friendship links, and
the second one is constructed using the links after denoising
by removing the link between two users whose corresponding
weight wj

i is 0. We then extract latent social dimensions [18]
for each user on the two networks, respectively. The latent
social dimensions are represented as a sparse vector for each
user. An entry of the vector is 1 if the user belongs to
the corresponding social dimension, 0 otherwise. With the
social dimension vectors as features and ground-truth class
labels, we validate the performance on each user-user network
in a supervised learning fashion, adopting F-Measure - a
harmonious mean of precision p and recall r:

F-Measure =
2pr

p+ r
(11)

Non-negative Matrix Factorization (NMF) is utilized in
experiments to compute social dimensions for simplicity. Since
NMF usually converges to local minima, we repeat the exper-
iments 10 times and report the average F-Measure.

C. Behavioral Inference

In this work, to infer a behavior is considered as a classi-
fication task. We use a certain percentage (e.g., 10% - 90%)
of users (with labels) to train a Linear SVM, and the rest
of the users to test. Since only BlogMI contains commenting
information, for comparison purpose, we first study the use
of linking and tagging information for network denoising on
the three datasets, and then investigate denoising with multiple
interactions (linking, tagging and commenting) on BlogMI.

1) Denoising vs No Denoising: Both linking and tagging
information can be used for denoising separately and aggre-
gately on the studied datasets. We present the performance
w.r.t. different interactions in Figure 2 on dataset BlogCatalog
(Left), Flickr (Center), and BlogMI (Right), respectively.

In each figure, the x-axis represents the fraction of
users that are used to train and the y-axis represents the
F-Measure. Four curves correspond to different denoising
schemes: No Denoising (NoD) (red, circle), Denoising with
Linking (DLink) (blue, square), Denoising with Tagging (DTag)
(cyan, hexagon), and Denoising with Linking and Tagging
(DLinkTag) (black, diamond).

There are several interesting observations: (1) DLinkTag
usually achieves the best or no worse performance than other
methods in terms of F-Measure; (2) The performance of
DLink and DLinkTag are close in most cases; (3) DTag has
a big variation across the three datasets; (4) Except DTag, the
inference performance with denoising is better than that with-
out denoising. The average relative improvement of different
denoising schemes compared to NoD is shown in Table II.
We obtain consistent improvement by applying DLinkTag and
DLink to the studied social networks.

The improved performance in terms of F-Measure confirms
our hypothesis that noisy links do exist in the original graphs.
Denoising might be useful in tasks related to linkages, such as

TABLE II. RELATIVE IMPROVEMENT RATIO OF DIFFERENT

DENOISING SCHEMES

Dataset BlogCatalog Flickr BlogMI
DLinkTag (%) 0.91 6.71 16.29
DLink (%) 0.99 6.04 14.94
DTag (%) -1.55 6.27 7.06

behavioral inference as shown above. The varied performance
improvement ratios suggest that the studied datasets have
different noisy levels. Intuitively, the BlogMI dataset is most
likely to have more noisy links because of the high nodal
degrees, followed by BlogCatalog and Flickr. On the other
hand, it is intuitive that denoising is more effective on social
networks with a large amount of noisy links. For example, we
obtain a larger improvement ratio on BlogMI than BlogCatalog
and Flickr, according to Table II.

Interestingly, DTag is not as effective as DLink. Like
categories and groups, tags also imply user interests to some
extent. The reason that DTag does not perform as well as
DLink is that tagging may impose too strong a constraint on
measuring tie strength. Thus, too many links are treated as
noisy links, which harms latent social dimension extraction.
On the other hand, the performance of DLinkTag is slightly
better than that of DLink, suggesting that linking and tagging
information are complementary to some extent.

2) Denoising Performance vs λ: The number of links to be
treated as noise is controlled by the user specified parameter
λ. A larger λ is more likely to keep fewer links. The results
based on DLinkTag are presented in Figure 3.

In these figures, λ is set to 10−5, 10−4, 10−3, 10−2, and
0.1 to 1 with an increment of 0.1. Only some of them are
presented in the figures. We have several interesting findings.
First, on all three datasets, the inference performance increases
before peaking, then decreases when λ increases from 10−5

to 1. However, on BlogCatalog, the F-measure corresponding
to different λs is closer than the other two datasets. Second,
the best performance is achieved when λ equals 0.1 and 0.2
on Flickr and BlogMI consistently. Third, the performance
between different λs does not differentiate significantly. The
reasons will be made clearer in the following sections.

3) Denoising with Multiple Interactions: We study multiple
interactions and their impact on behavioral inference. The
performance of three interactions and their combinations on
BlogMI are presented in Table III. λ is set to 0.2.

Applying denoising often improves F-Measure. Applying
linking, tagging, or commenting and their combinations to
denoising consistently improves the performance. However,
more interactions do not necessary imply better performance.
Denoising with Linking and Tagging performs best in most
cases, whereas integrating all three interactions performs rea-
sonably well but not the best on the dataset. On average,
integrating two interactions gains 2.74% more than utilizing
only one of the interactions, whereas integrating all three
interactions is almost equivalent to the peformance of utilizing
only one of the interactions.

4) Link Reduction Analysis: We study the link reduction
rate for each dataset and show the correlation between the rates
and regularization parameter λ. Figure 4 shows the denoised
network by DLinkTag. The x-axis represents the regularizer λ
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Fig. 2. Behavioral Inference Performance with Different Denoising Schemes
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Fig. 3. Behavioral Inference Performance w.r.t. λ

TABLE III. F-MEASURE PERFORMANCE ON BLOGMI DATASET

Proportion of Labeled Users 10% 20% 30% 40% 50% 60% 70% 80% 90%
Linking + Tagging 12.43 13.43 13.83 14.96 14.97 15.41 15.68 15.32 15.60
No Denoising 10.95 11.38 12.17 12.92 12.55 12.83 13.66 13.37 13.35
Linking 11.90 13.43 14.23 15.03 14.95 14.97 15.39 15.26 14.94
Tagging 10.04 12.08 12.54 13.35 14.26 14.87 14.87 14.60 14.92
Commenting 11.20 12.85 13.19 14.52 14.50 14.93 15.31 15.12 15.36
Tagging + Commenting 11.62 11.71 13.32 13.80 14.87 15.19 15.46 15.36 15.36
Linking + Commenting 12.37 13.78 13.94 14.40 14.70 14.86 15.33 15.11 15.49
Linking + Tagging + Commenting 12.20 13.22 13.83 14.22 14.23 14.73 15.16 15.12 14.81

and the y-axis represents the reduction rate. As λ increases
from 0.1 to 1.0, more links are expected to be removed, but
the reduction rates do not decrease significantly. The result
confirms that the selection of λ is not sensitive in the studied
datasets. For example, the link reduction rates are around 60%,
37%, and 70% on BlogCatalog, Flickr and BlogMI when λ
varies, respectively.

More interestingly, when we take a closer look at the
reduction ratios of the networks, even when the regularization
term is set to very small (e.g. 10−5), we obtain similar
reduction ratio. This suggests that (1) a large portion of users
are connected loosely; these users could be so-so friends or
they do not interact with each other. (2) In the studied social
networks, noisy links are very easy to remove even when the
regularization penalty is very small. The results suggest that
tuning the regularization parameter λ is not imperative.

Another observation is that the Flickr dataset has a higher
link keep ratio than BlogCatalog. It seems that Flickr users
share more similarities with their social networks. First, on
average, a Flickr user has 178 tags, whereas the BlogCatalog
and BlogMI users only have 8 tags. Second, on average,
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Fig. 4. Link Reduction Rate w.r.t. λ

a Flickr user shares 24.43 tags with his neighbor, but the
BlogCatalog and BlogMI users only share 0.27 and 0.24 tags,
respectively. Third, Flickr users have fewer friends compared
to the users on the other two datasets. It is natural to assume
that more friends means more noisy links in a graph, because
the number of friends one can have is often upper limited. The
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Fig. 5. Scalability of Network Denoising

reduction rates verify above hypothesis.

5) Advantages of Denoising Social Networks: The benefits
of denoising social networks are shown empirically. We select
the λs that correspond to peak performance on the three
datasets and demonstrate statistics of link reduction ratio,
relative improvement ratios, and computational time reduction
for extracting latent social dimensions. The results are obtained
when selecting 90% of the users as training dataset, and 10%
of users as test.

First, as shown in Table IV, we gain improvement of
inference performance consistently on the three datasets with
various denoising schemes. This suggests that denoised social
networks are more homogeneous: users have a higher similar-
ity with their social networks.

Second, the links that are removed are typically huge in
the studied social networks, especially on BlogCatalog and
BlogMI datasets irrespective of denoising schemes. The de-
noised networks are more compact; thus, further tasks such as
data analysis, storage, and visualization can benefit. However,
there is a potential risk in the removal of too many connections
(over-denoising). For example, denoising with Tagging only
keeps 14% of links on BlogCatalog.

Third, the computational time for behavioral inference is
reduced due to smaller sized social networks. The time is
reduced to one third on BlogCatalog and BlogMI datasets,
obtaining no worse performance than behavioral inference
without denoising.

D. Scalability

Theoretical analysis shows that the time complexity of
network denoising is linear with respect to the size of social
networks. We verify it empirically on the studied datasets.

Given a specific ratio (e.g. 50%), we randomly select
users from the whole dataset and record the time for network
denoising. The process is repeated 10 times and the average
elapsed time is reported. As shown in Figure 5, the time spent
is increasing linearly when more users are denoised. The time
spent on BlogMI is longer because the average node degree in
this dataset is larger than the other two. The time required to
denoise BlogCatalog and Flickr are very close.

The linear time complexity shows that our method can be
scaled up to deal with large scale real world social networks.

E. Statistics before and after Denoising

To verify whether the graph structure is maintained after
denoising, we plot the degree distribution for the studied
datasets. Figures 6 and 7 demonstrate the degree distribution
before and after denoising the social networks, respectively.
In these graphs, the x-axis represents the nodal degree and the
y-axis shows the number of users who have the degree values
indicated by the x-axis. Apparently, the degree distribution
of the corresponding networks are quite similar. A closer
look at the denoised networks shows that the singletons only
account for 2.9%, 3.3% and 0.02% on BlogCatalog, Flickr,
and BlogMI, respectively. The number of singletons increased
from 32 to 252, 211 to 279, and 0 to 1 in the three datasets,
respectively. This shows that users with a small number of
connections are not significantly penalized by applying the
denoising procedure. The results reveal that the structure of
the social networks are maintained: the majority of users are
still connected in a large component and they still connect to
their close friends.

The statistics of the networks are presented in Table V.
We compute the average nodal degrees, clustering coefficient,
and average sharing tags on the networks with and without
denoising. As expected, after denoising, the average number
of neighbors are reduced to 26, 29, and 49 on BlogCatalog,
Flickr, and BlogMI, respectively. The clustering coefficient is
also dropped, which suggests that though a certain number
of triads are broken, there are still a large number of triads
remaining. This result suggests that triads do not imply strong
connections. On average, the shared tags between a user and
his neighbor is increased 0.13, 4.52, and 0.15.

F. Discussion of limitations on denoising

So far we have investigated the effect of denoising on
behavioral inference. A more compact network that is easy
to organize after denoising could help improve both time-
efficiency and performance for certain tasks. However, network
denoising is task-oriented. On certain tasks, denoising may not
be able to improve the performance, and sometimes may even
reduce the performance due to its limitations. One of the major
limitations on denoising is “loss of negative information”. In
this work, the “noise user” related to a target user is considered
as a user who holds irrelevant or opposite interests to the target
user regarding our behavioral inference task. Filtering such
users provides a purer environment that could better present
homophily effect, which is helpful in behavioral inference.
However, correspondingly, negative information (links that
connect users with different interests) are lost. This could be
analog to a user-user network with trust information (positive
information) only while without the observation of distrust
information (negative information). Since negative information
is important for recommender systems [21], denoising may
reduce the performance of tasks like item recommendation.

V. RELATED WORK

Kivran-Swaine et al. [22] studied the impact of structure
properties on breaking ties on Twitter. They found that tie
strength, social status, and embeddedness are the key factors
that influence the breaking of ties. Dyadic reciprocity is an
indicator of a strong tie, though it is not clear when more than
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TABLE IV. ADVANTAGES OF DENOISING SOCIAL NETWORKS WHEN 90% OF USERS ARE USED IN TRAINING

Datasets Methods F-Measure (%) Link Reduction Time (second)

BlogCatalog

No Denoising 25.81 290,059 101.92
Linking 26.08 (+0.7%) 112,559 (-61.19%) 36.43 (-65.49)
Tagging 25.91 (+0.4%) 39,775 (-86.29%) 47.44 (-54.48)
Linking + Tagging 26.37 (+2.2%) 114,337 (-60.58%) 46.65 (-55.27)

Flickr

No Denoising 48.06 195,847 85.62
Linking 51.28 (+7%) 96,442 (-50.76%) 64.67 (-20.95)
Tagging 51.20 (+6.53%) 107,247 (-44.24%) 66.75 (-18.87)
Linking + Tagging 51.29 (+6.72%) 123,130 (-37.13%) 67.07 (-18.55)

BlogMI

No Denoising 13.35 523,642 106.1
Linking 14.94 (+11.91%) 137,261 (-73.79%) 32.34 (-73.76)
Tagging 14.92 (+11.76%) 38,575 (-92.63%) 24.26 (-81.84)
Commenting 15.36 (+15.06%) 49,139 (-90.62%) 54.13 (-51.97)
Linking + Tagging 15.60 (+16.85%) 147,881 (-71.76%) 35.96 (-70.14)
Tagging + Commenting 15.36 (+15.06%) 75,027 (-85.67%) 46.68 (-59.42)
Linking + Commenting 15.49 (+16.03%) 155,004 (-70.40%) 28.77 (-77.33)
Linking + Tagging + Commenting 14.81 (+10.94%) 141,200 (-73.04%) 32.47 (-73.63)
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Fig. 6. Degree Distribution before Denoising

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Degree

N
um

be
r 

of
 u

se
rs

(a) BlogCatalog

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Degree

N
um

be
r 

of
 u

se
rs

(b) Flickr

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Degree

N
um

be
r 

of
 u

se
rs

(c) BlogMI

Fig. 7. Degree Distribution after Denoising

two users are involved. Ties between individuals in denser net-
works are more likely to be strong; the more common friends
a dyad shares, the less likely the edges to be broken. Sibona
et al. studied various reasons of unfriending on Facebook and
they concluded that “people are most likely to unfriend those
who post mundane or inflammatory status updates”.

Tie strength refers to the degree of closeness of a rela-
tionship. Researchers often consider two types: strong ties
(close friends) and weak ties (acquaintances) [23]. Strong ties
tend to exhibit higher similarity between the two subjects and
weak ties are passages for conveying novel information [24].
Tie strength can be learned by supervised and unsupervised
methods. Gilbert and Karahalios [25] propose to predict the
tie strength by linear regression. They found intimacy, in-
tensity, duration, and social distance are the most important

factors determining the strength of a relationship. Kahanda
and Neville [26] propose to estimate link strength by learning
a predictive model leveraging transactional information and
show that such features are most influential in estimating
tie strength. Xiang et al. [6] present an unsupervised latent
variable model to estimate the link strength. The basic as-
sumption is that the strength of a relationship affects the
interactions between users: they show improved performance
in classification tasks. Although the weight vector defined in
Eq. (2) is interpreted as tie strength, the paper differs from
former work: (1) the problem studied is different; (2) the
motivations and formalizations are also different.

Link prediction is the task of inferring a future connection
given the network at current time stamp. Liben-Nowell and
Kleinberg [27] formalize the problem and the study on co-
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TABLE V. NETWORK STATISTICS BEFORE AND AFTER DENOISING

Measures Ave. Degree Clustering Coefficient Ave. Sharing Tags
No Denoising Denoising No Denoising Denoising No Denoising Denoising

BlogCatalog 66 26 0.46 0.20 0.27 0.40
Flickr 46 29 0.13 0.12 24.43 28.95
BlogMI 173 49 0.39 0.12 0.24 0.39

authorship networks shows that the future interactions be-
tween users can be extracted from network topology alone.
Besides the network structure, supervised learning methods
leveraging proximity features such as distances, similarity, etc.,
can produce better performance in social networks and web
pages [28], [29]. Scellato et al. [30] applied supervised link
prediction methodologies to location-based social networks for
friend recommendation with a set of location-based features.
Link prediction attempts to introduce new links in the future,
whereas the task of this work is to remove unlikely links in
current time stamp. It could be interesting to see how our work
can affect the performance of link prediction as future work.

VI. CONCLUSION

Social media allows users to connect to an extraordinary
amount of online friends. However, as the user’s social network
expands, the need for friend management intensifies. In this
work, we propose an efficient approach to denoise social
networks for friend management by utilizing multiple types
of interactions in social media. The advantages of denoising
social networks are verified via the performance of behav-
ioral inference, link reduction, and time efficiency. Network
denoising not only improves performance but also make social
networks more compact for efficient social media mining.
Interesting future work can be explored further.As social media
grows, more types of interactions will be made available. At
least two lines of research can be pursued: integrating all vs.
selectively integrating. If we can access two social networking
sites at the same time, it is challenging to see if we can take
advantage of their different but complementary information.
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