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Abstract particularly difficult [10, 3, 15, 16].

Feature selection has been proven to be efficient in pregarin Without label information to define feature relevance, a
high dimensional data for data mining and machine learnifymber of alternative criteria have been proposed for unsu-
As most data is unlabeled, unsupervised feature selection Pervised feature selection such as data variance, datasimi
attracted more and more attention in recent years. Discri-[10, 15, 17] and data separability [18, 14]. However, mos
inant analysis has been proven to be a powerful technidisting criteria for unsupervised feature selection eegl

to select discriminative features for supervised featatecs the discriminative information of features, which has been
tion. To apply discriminant analysis, we usually need labdgmonstrated to be important in data analysis [16]. Discrim
information which is absent for unlabeled data. This gdpantanalysis plays a crucial role in supervised featuetse
makes it challenging to apply discriminant analysis forunstion [19]. It aims to select discriminative features sucatth
pervised feature selection. In this paper, we investigave pwithin-class distance is as small as possible while between
to exploit discriminant analysis in unsupervised scersago €lass distance is as large as possible [5]. Previous studies
select discriminative features. We introduce the concéptShowed that algorithms based on discriminant analysis such
pseudo labels, which enable discriminant analysis on uni&- Fisherscore [5] and Linear Discriminant Feature Selec-
beled data, propose a novel unsupervised feature selecti@n [20] can select discriminative fgatures for classtfm
framework DisUFS which incorporates learning discrimin@nd are the state-of-the-art supervised feature seleation
tive features with generating pseudo labels, and developd@ithms [15, 21, 22]. The work of discriminant analysis is
effective algorithm for DisUFS. Experimental results of: dioften associated with the availability of label informatjo
ferent types of real-world data demonstrate the effectigenWhich is unavailable for unlabeled data. This gap makes per-

of the proposed framework DisUFS. forming discriminant analysis on unlabeled data challeggi
In this paper, we investigate how to employ discriminant
1 Introduction analysis for unsupervised feature selection to selectidisc

inative features and propose a novel feature selectiongram

Hl_gh-_dlmen5|onal data is .common in many rgal-world a&zﬁork DisUFS which can select a set of discriminative fea-
plications such as data mining, machine learning, computer

- : . . . ; . tlljres simultaneously for unlabeled data. Our contribgtion
vision and image processing. Data with high dimensional- ;
are summarized as,

ity not only significantly increases the time and memory re-
quirements of algorithms, but also can degenerate their per,
formance due to the curse of dimensionality and the exis-
tence of irrelevant dimensions [1]. Feature selectiorectel
ing a subset of most relevant features for a compact and acs Proposing an unsupervised feature selection framework
curate presentation, is proven to be an effective and efficie  pisUFS which combines learning discriminative fea-
way to handle high-dimenSional data [2, 3, 1] tures and generating pseud0_|abe|s;

Based on whether the training data is labeled or not,
feature selection methods are broadly divided into supere Developing an efficient algorithm to address the opti-
vised methods and unsupervised methods. Supervised fea- mization problem of DisUFS; and
ture selection selects features with the capability toirist ] .
guish samples from different classes [4, 5, 6, 7, 8]. As® Evaluatlng the proposed framework DiSUFS systemat-
most data is unlabeled, unsupervised feature selection at- ically on various types of real-world datasets to under-
tracts increasing attention in recent years [9, 10, 11]. For Stand the working of DisUFS.
unsupervised feature selection, the definition of relegaric . . .
features becomes unclear due to the lack of label informa- 1he rest of this paper is organized as follows. Our un-

tion [12, 13, 14], hence, it is a less constrained problem aﬁépervised feature selection framework based on discrimi-
T ' nant analysis DisUFS is introduced in Section 2. In Section
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Introducing the concept of pseudo labels to enable us to
perform discriminant analysis on unlabeled data;



is presented in Section 4 with discussion. In Section 5, wee within-cluster distance is minimized while the between
briefly review related work. The conclusion and future worduster distance is maximized as
are presented in Section 6.

(2.3) max Tr((W'S, W) 'WTS,W).

2 The Proposed Unsupervised Feature Selection The introduction of pseudo labels allows us to perform

Framework discriminant analysis on unlabeled data as in Eq. (2.3) and
Let F = {f1, f2,..., fm} be the set of features whene is then our unsupervised feature selection framework DiSUFS
the number of features all = [x;, X, ..., x,] € R"*" based on discriminant analysis can be formulated as the
be a set of unlabeled data whereis the number of data following optimization problem,
points. For simpliqity,nwe assume that the data po_intXin max Tr((WTXXTW)—leXYYTXTW)
are centered, that i3,,,” , x; = 0, which can be realized as WY
X = XP whereP =1, — 11,1, — al|Wja1,

To address the challenges presented by the lack of neh, hs
label information for discriminant analysis, we introdube
concept of pseudo labels. In detail, we assume that these sty =m(0,..,0,%, . 1)/ Vhi
unlabeled data points can be assigned witbseudo labels k
C = {c1,c9,...,cx}. Let H € R™** pe pseudo labels(2-4) Y hi=n

=1

indicator matrix wherdl (i, j) = 1 if x; is assigned thg-th

label, zero otherwise. We further defife as the weighted where||[W |2 ; is the /s ;-norm of W, which is defined as
pseudo label indicator matrix, which can be obtained frofallows:

H as below,

m k m
Y = HH"H)" 3, 25) [Wlaa =Y | > W2(,5) =Y [[W(i,:)]2
i=1 \ j=1 i=1
where thei-th column ofY is given by The term||W||o; in Eq. (2.4) is introduced to control

the capacity of W and also ensure th&V is sparse in
—— —— rows. Since each row dW corresponds to a feature A,
2.1) Y(i,)) =7(0,...,0,1,....1)/Vh; the term||W ., makesW particularly suitable for feature
) _ _ ] selection. In detail, we can rank featurg§™, according to
whereh; is the _number of data_ points Wlth thieh pseudo W (4, :)||o|, in descending order and select tapranked
labelc; andn(-) is the permutation function. features wheré is the number of features we want to select.
With pseudo labels, we can apply discriminant analysi,e narameter is introduced to control the sparsity Y.
to unlabeled data. Denofe = )., x/h; asthe mean 1o gignificance of the introduction of pseudo labels
vector of thei-th pseudo labet;. We first define within- ;5 e proposed framework DisUFS is two-fold. First,
cl_uster scatter, between-cluster scatter and total saatie with pseudo labels, we can perform discriminant analysis
trices based on pseudo labels as on unlabeled data. Second, with pseudo labels, we can
& do unsupervised feature selection in an supervised manner.
_ N However, the introduction of pseudo labels also brings abou
Suw=2 > b —m)lx )" new challenges to optimize Eq. (2.4). In the following

i=1 x;€c; . . P . .
L section, we will introduce an optimization algorithm to kee
S, = Z’L'M'MT XYY XT an optimal solution for Eq. (2.4).
S ;;(T 3 An Optimization Method for DiSUFS
t = )

The optimization problem of DisUFS mixes ;-norm op-

where Tr(S,,) captures the within-cluster distance, an@émization onW with integer programming ofY" and it is
Tr(S,) captures the between-cluster distance. It is easydifficult to addresg’; ;-norm optimization and integer pro-

verify that gramming simultaneously. We note thaf; -norm optimiza-
tion on W and integer programming ol are decoupled
(2.2) S; =S, +8Ss. if we optimize W andY separately. This observation mo-

tivates us to adopt an alternating optimization to solvs thi
Then linear discriminant analysis aims to obtain a liproblem, which works well for a number of practical opti-
ear transformatiolW < R™*? that projectsX from m- mization problems [23]. Under this scheme, we updaie
dimensional space td-dimensional spacé (< m) such that andY in an alternating manner.



31 Given Y, Computing W WhenY is fixed, W is Lemma 3.1 indicates that tifg ;-norm of B is equal to

obtained by the followind, ; -norm optimization problem, that of W. With Theorem 3.1 and Lemma 3.1, the maxi-
T T 1xxrT ToT mization problem in Eq. (3.6) is equivalent to the following
mv%XTr((W XX'W)TIWIXYY ' X'W) minimization problem:

(3.6) —a|W

2,1- .
(312)  win|X"B -Gl +a|B|2s,

Recently there have been many methods proposed to
solve thel, ;-norm optimization problem [24, 8, 25]. How-where the optimal solutions @ and W have the relation
ever, the problem in Eq. (3.6) is different from existinggq — [W,0].
ones due to the term ¢W " XX W)~'. Directly solving The /5,,-norm minimization problem in Eq. (3.12) is
Eq. (3.6) is difficult; thus, we will introduce an algorithm t wel| studied [24, 8, 25] and in this paper, we adopt the
solve Eqg. (3.6) indirectly with the following theorem. optimization method in [8, 25] to obtaiB as shown in the

THEOREM 3.1. Maximizing following theorem.

(3.7) Tr(WIXXTW) '"WTXYY 'X'W) THEOREM3.2. B in Eqg. (3.12) can be updated by
is equivalent to minimizing the following problem: (3.13) B = (XX +0a0)"'XG,
(3.8) IX'B - GlI%,

which can monotonically reduce the objective val(eis a
under the condition: rank§;) = rank(S;) + rank(S,,), where diagonal matrix and its-th diagonal element is defined as
B ¢ R™** andG is a special pseudo label indicator matrix

as follows: (3.14) Q(i,1)

L_ hik 'f X
(3.9) G(i,k):{ \/; \r It x; € ck,

he .
—\/ % otherwise Proof. Using £y to denote the objective function of

In addition, the optimal solution of Eq. (3. AV and the Eq. (3.12), we take the derivative Sy,
optimal solution of Eq. (3.8B have the following relation, OLw

(3.10) BQ = [W,0], (319 oW

B 1
2B, :)ll2°

=2XX"B - 2XG + 200B.

whereQ is a orthogonal matrix, i.,eQ'Q =QQ" =1 XX is a semi-positive definite matrix and therefore
XX T + o is a positive definite matrix. Setting the deriva-

Proof. The detailed proof process is similar to that of equiyjye to zero, we can obtain the update rule in Eq. (3.16),
alence between linear discriminant analysis and multilab

least square in [26]. Note that the condition in Theorem 33.16) B = (XXT +a0)7'XG,
is usually satisfied for high-dimensional data [26], whish i
usually the case in feature selection problem. Similar to [8, 25], we can prove that the update rule

Next we will find an equivalent formulation for Eq. (3.6)|£qu3; S.)lz\s/\)/hrignf ;%n;;f;gi ;Egupcr(e)zfthe objective value of

with the help of Theorem 3.1, and we begin with the follow-

ing lemma. , According to Theorem 3.2, we can obtain an optimal
Lemma31l If BQ = [W,0] andQ is an orthogonal g, yion of B. However, we still do not know the optimal
matrix, then solution of W from B since we do not know the specific
(3.11) IB(, )2 = [|[W(, )]l form of the orthogonal matrixQ, which is difficult to
obtain [26]. ActuallyW plays two roles in our framework
Proof. SettingC = BQ andD = [W, 0], we have - selecting features and computig Lemma 3.1 indicates

1CG, s = [BG, QI that the/s ;-norm .ofB is equal to that ofW. Therefore,
T T B can replacéW in terms of selecting features. B can
= \/B(i, HQQTBT(i,:) = |B(4, )|, also replacédW to computeY, we can usé to replaceW
in our framework, which significantly reduces the difficulty
and||D(i,:)|l2 = [|[W(4,:)]|2. Since||C(i,:)]]2 = ||D(z,: of optimizing our framework. In the following subsection,
)||l2, we can obtain thaliB(i,:)|l2 = ||W(i,:)|l2, which we will demonstrate thaB can also replac® to compute
completes the proof.] pseudo label matriy .




3.2 Given W, Computing Y WhenW s fixed, Y is
obtained via solving the following problem,
m@xTr((WTXXTW)*leXYYTXTw)
n—h; h;

—N—
s.t. yi:7T(O7"'50717"'71)/\/hi

k
Z hl =N
i=1

Next we will show thafB can replacdWV in Eq. (3.17)
to computeY with the following lemma.

Lemma 3.2 If BQ = [W,0] andQ is a orthogonal
matrix, then

Tr(WIXX'W)'WXYY 'X'W)

(3.17)

is equivalent to
Tr(B'XX'B) 'B'XYY X'B)
Proof. It is easy to verify that
Tr(WTXXTW) '"WTXYY 'X'W)
= Tr((BQ)'XXBQ) '(BQ)' XYY 'X'BQ),
we have
(BQ)'XX'BQ)'=(Q'B'XX'BQ)™"
(3.18) =Q'B™XX"B)"1(Q")L
SinceQ is a orthogonal matrix, we have,
(3.19) Q'=Q", Q") '=Q
With Eq. (3.18) and Eq. (3.19), we can obtain,
Tr((BQ)'XX'BQ)"'(BQ)' XYY 'X'BQ)
=7r(Q"(BTXXB)Q(BQ) XYY X BQ)
(3.20)
=Tr((BTXX'B)B'XYY'X'B)

which completes the proafl

Lemma 3.2 indicates th& can replacéV to compute

Y. Therefore, Eqg. (3.17) can be rewritten as the following

optimization problem,
maxTr((B'XX'B)"'B'XYY 'X'B)
h;

S0/,

0,1,..

nfhi

sit. y; =m(0,...

k
i=1

whereB is learnt by Theorem 3.2.

(3.21)

THEOREM 3.3. The optimalY can be computed by solving
a kernel K-means problem witd 'B(B" XX 'B)"'B'X
as the kernel Gram matrix.

Proof. SinceTr(AC) = Tr(CA) for any two matriceA
andC, Eq. (3.21) can be reformed as

max Tr (Y'X'B(B'XX'B) 'B'XY)

’I‘L*hi hi

—N— —
s.t. yi:Tl'(O,...,O,l,...,l)/\/hi

(3.22)

Itis easy to verify thaX "B(B' XX 'B)~!B " X is a semi-
definite matrix, which can be a kernel Gram matrix. Accord-
ing to [27, 28, 29], the optima” can be obtained via solving
a kernel K-means problem witi 'B(B"XX 'B)"'B'X

as the kernel Gram matrix, which completes the pfdof

3.3 The Proposed Algorithm Lemma 3.1 indicates that
the /3 ;-norm of B is equal to that oW, while Lemma 3.2
indicates thaB can replacéW to computeY. These two
lemmas suggest th& can replacéV for DisUFS. Instead
of computingW andY, it is much easier to compuig and

Y. We develop an alternating optimization method for Dis-
UFS via alternatively solving the following two optimizati
problems forB andY, respectively.

e The optimization problem foB is

(323)  win|XB -Gl +a|Bla:.

e The optimization problem fo¥ is
m&xTr(YTXTB(BTXXTB)’lBTXY)

n—h; h;

D) /V/hi

—N— —
st. y; =m(0,...,0,1,...

k
th =N
i=1

(3.24)

Theorem 3.2 and Theorem 3.3 provide updating rules
for B and Y respectively, and the detailed optimization
algorithm for DisUFS is presented in Algorithm 1.

We briefly review Algorithm 1. In line 4, we construct
G from Y according to Eqg. (3.9). Based on Theorem 3.2,
we updateB in line 5 and construc? in line 6. In line
7, we updateY according to Theorem 3.3. Originally the
importance of the-th feature is indicated bYW (i, :)||2.
However, with Lemma 3.1, we hayiB(z,:)|l2 = ||[W(3,:

We develop the following theorem to solve the integéfl.. Therefore, in line 9, we rank features in descending

programming problem in Eq. (3.21).

order according tdB(z, :) |2



Algorithm 1 The Proposed Unsupervised Feature Selection

Eramework - DiSUES Table 1: Statistics of the Data Sets

Datasets Size | # of Features| # of Classes
:)??g;tu)r(e,str;g gglrgggr of pseudo labédlsc, and the number BIX10P 100 10,000 10
Output: K most relevant features PIELOP 210 2,420 10
o . . CLL-SUB-111 || 111 11,340 3
1: Initialize Y via performing k-means oX TOXA71 171 5748 2
2: Initialize 2 as an identity matrix .
3: while Not convergentio
4:  ConstructG fromY unsupervised feature selection algorithms to select festu
5.  UpdateB: B «+ (XX + aQ)"'XG and then perform k-means with the selected features. Since
6: Update the diagonal matri, where the-th diagonal k-means often converges to local minima, we repeat each
element ism experimentl0 times and report the average performance.

7:  UpdateY via solving a kernel K-means problem Two commonly used metricsaccuracy and normal-
with X TB(BTXX "B)"!BT"X as the kernel Gramized mutual information(NMI), are employed to evalu-

matrix ate the quality of clustefs How to determine the op-
8: end while timal number of selected features is still an open prob-
9: Sort each feature according tB (3, :)||2 in descending lem [25] thus we vary the numbers of selected features as
order and select the tofi-ranked ones; {20, 50, 70, 100, 120, 150, 170, 200, 250, 300}.

4.2 Quality of Selected Features We compare DisUFS
Time Complexity : The most time-consuming operawith the following three representative unsuperviseduieat
tions for Algorithm 1 are to updatB in the line 5 andY in selection algorithms:

the line 7. e UDFS [16] selects features in batch mode by simulta-
e B« (XX +aQ)~'XG can be efficiently obtained neously exploiti_ng !ocal discriminative information and
by solving the linear equatiofXX " + aQ2)B = XG, feature correlation;
which need (km?). e MCFS [14] selects features using spectral regression

e To obtain Y, we need to solve a kernel K-means with £, -norm regularization;

problem withX "B(B"XX "B)'B' X asthe kernel o Laplacian Score [10] evaluates the importance of a

Gram matrix, which take® (kmn + km?). feature through its power of locality preservation.
In summary, the total time complexity of Algorithm 1is ~ MCFS and Laplacian Score are not based on discrim-
#iterations » O(km(m + n)). inate analysis, while UDFS and DisUFS are based on dis-
criminate analysis. The major differences between UDFS
4 Experiments and DisUFS are two-fold. First, UDFS exploits the local dis-

In this section, we conduct experiments to evaluate the Efiminative information while DisUFS performs global dis-
fectiveness of DisUFS. After introducing experimentak sefiminant analysis with the help of pseudo labels. Second,
tings, we compare DisUFS with the state-of-the-art unsupl}e OPtimization problems for UDFS and DisUFS are very
vised feature selection methods. Further experimentsare{fferent. The parameters in all methods are determined via

signed to investigate the effects of parameters (the nupfbef0SS-validation. For DisUFS, we set the number of pseudo
pseudo labelg anda) on DisUFS. labelsk to 20 in PIX10P and PIE10P, while we skto 25 in

CLL-SUB-11 and TOX-171. More details about the effects

41 Experimental Settings We choose four benchmarkOf parameters on DisU.FS will be di;cussed in the later sub-

data sets of different types, e.g. image data (PIX10P afflions. The comparison results in terms of accuracy and

PIE10P) and microarray data (CLL-SUB-111 and TOXNMI are s_hown in Figures 1 and 2, respectively. We make

171), to test the performance of unsupervised feature sef@€ following observations,

tion’. Some statistics of these datasets are shown in Table 1, \with the increase of the number of selected features,
Following the common way to evaluate unsupervised clystering performance trends to first increase and then

feature selection algorithms, we assess DisUFS in terms of gegrade. LapScore, MCFS and UDFS obtain compara-
clustering performance [15, 16]. In detail, we first apply  pje results on all data sets.

These data sets are publicly available from http:/ feaies- 2We use the source code from http://www.zjucadcg.cn/ deng-
tion.asu.edu/datasets.php. cai/Data/Clustering.html.
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Figure 1: Comparison of Different Unsupervised Feature&gmin Algorithms w.r.t. Accuracy.

e DisUFS consistently obtains better performance thé&r) on the proposed framework DisUFS. We vary the num-
UDFS. We perform a t-test on the results of DisUFBers of pseudo labels &8, 5, 7,10, 15, 20, 25, 30, 35, 40}.
and UDFS, and the testing results suggest that the ke performance variation with respect#aand the num-
provement of DisUFS over UDFS is significant. Thedser of selected features is depicted in Figure 3. Note that
results indicate that global discriminant analysis witlve only show the performance in terms of accuracy since we
pseudo labels is more likely to select discriminative fehave similar observations in terms of NMI.
tures than local discriminant analysis. Most of the time, with the increase bfthe performance
first increases gradually, reaches its peak value and then

* Most of the time, DisUFS outperforms all the Ioase“n&egrades. Wheh is too small, pseudo labels cannot fully

Ir_nethodtsh. gompared to thg_bsitspegfr%n%agr;:e Olf baggbture the cluster structure of the data, while DisUFS will
In€ methods, on average Lis obtamBs7o Tela- - o\ erfit the data with a large number of pseudo labels. This
tive {mprovement n _terms. of accuracy. _Slmllarly, a Battern can be used to determine the optimal value &fe
testis performed to !nvest|gate the sign |f|can(;e é?”d. 0 note that the best performance is achieved when the
results suggest the improvement of DisUFS is signi umber of pseudo labels is larger than the actual number of

cant. These results further demonstrate the capablé ¥sses. For each dataset, the performance is not sersitive

of discriminant analysis for unsupervised feature Sel%i/vhenk is in a certain region such dsis from 10 to 30 in
tion with pseudo labels. CLL-SUB-11

In summary, DisUS performing discriminant analysis
with pseudo labels can improve unsupervised feature seé- Impact of o The parameter, controlling the row
tion performance in terms of clustering. In the followingparsity ofW, plays an important role in DisUFS for feature
subsections, we will investigate the impact of the number gglection. We investigate the effect @fby analyzing how
pseudo labels on DisUFS in detail. changes ofv affect the performance of DisUFS. We vary the
value ofa as{0.1,0.5,1, 10, 100, 500, 1e3, 5e3, 7e3, led}.

4.3 Impact of Numbers of Pseudo labels In this subsec- The performance variance w.r.ta and the numbers of
tion, we investigate the effect of the number of pseudo Ebékelected features is demonstrated in Figure 4. We only
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Figure 2: Comparison of Different Unsupervised Feature&gwin Algorithms in terms of NMI.

show the results in terms of accuracy since we have simirained search problem and depending on clustering gualit

observations in terms of NMI. measures [12, 13], and can eventuate many equally valid fea-
With the increase ofy, we observe a similar pattern taure subsets. With high-dimensional data, it is likely tadfin

that with the increase of the number of pseudo labelper- many sets of features that seem equally good without con-

formance first increases and then decreases, demonstraidering additional constraints.

the capability o, ;-norm in feature selection. We also note  With label information, discriminant analysis is broadly

that betweemx and the number of selected features, DisUR&lopted by supervised feature selection methods. Fisher

is more sensitive to the number of selected features. score is one of the most popular methods in this family.
Its key idea is to find a subset of features such that with
5 Related Work the new representation, the distances between instances in

Feature selection can be roughly categorized into sumﬂvi&he same class are as small as possible, while the distances
or unsupervised methods based on the training data bdi§§veen instances in different classes are as large as pos-
labeled or unlabeled [3, 30]. Supervised methods can $l€ [5]. Sparsity regularization, such as the-norm of
further divided into filter models [4, 7] and wrapper mod® Matrix [33], has been widely investigated and applied to
els [31, 32]. Filter models separates feature selectiom fré€ature selection [34, 24, 8, 35] in dimensionality redorati
classifier learning and the bias of a learning algorithm dogéscriminant analysis with spare learning attracts insieg
not interact with the bias of a feature selection algoritd [ attention in supervised feature selection. In [20], the au-
while wrapper models adopt the performance of a predetélors proposed a sparse linear discriminant feature seect
mined learning algorithms to assess the quality of selecfedmework (LDFS), which is equivalent to solve the follow-
features and can be egregiously expensive to run for dé@pProblem,
with a Iargg number of features [5, 6]. Since mqst c_iata in the max Tr((W' S, W)~ (WTS,W))
real-world is unlabeled, more and more attention is paid on w
unsupervised feature selection [9, 10, 11]. Without class | b
bels, unsupervised feature selection [10, 3, 15] is a less co —H Z W (i, 1) oo

=1
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Figure 4: Number of Features us

Wherer:1 IW(i,:)||c is the ¢1 /¢, norm of W. The 6 Conclusion
structured sparse transformation maf allows LDFS to pjscriminant analysis is widely adopted to select discrimi
achieve feature selection. In [22], an alternative foriafa native features for supervised feature selection. Duedo th
based on discriminant analysis is proposed, which is equiygk of label information, it is much more difficult to per-
lent to solve the following problem,, form discriminant analysis for unsupervised feature selec
tion. In this paper, we propose a novel unsupervised feature
selection framework DisUFS which can select a set of dis-
min <[ XTW — HI[% + 1| W]l2,1 criminative features simultaneously. To tackle the difficu
w2 presented by the lack of label information, we introduce the
concept of pseudo-labels, which allows us to perform dis-
criminant analysis on unlabeled data. We combine learning
whereH is a weighted class label matrix, and details abogscriminative features and generating pseudo-labetsant
the definition ofH can be found in [22]. coherent framework. The optimization problem for DisUFS
To apply discriminant analysis, we usually need |§"nixes£2’1-norm optimization with integer programming and
bel information which is absent for unlabeled data. Thige develop an alternating optimization method for DisUFS.
gap makes it challenging to apply discriminant analysis fe&periments are conducted on various types of real-world
unsupervised feature selection. In [16], Local discrimingatasets and the results show that our proposed framework

UDFS and it defines local discriminative score to evaluaign methods.

posed framework DisUFS - (1) DisUFS performs global digzn only find a local optimal solution for DiSUFS and we
criminant analysis with pseudo-labels, while UDFS mak@g| study optimization algorithms to seek a global solutio
use of local discriminant analysis; and (2) DisUFS combingsy pisUFS. Second, we would like to seek a method to

generating pseudo-labels and selecting discriminatiee fgetermine parameters of DisUFS automatically.
tures into a coherent framework, while UDFS assumes the

class label of input instances can be predicted by a linear
classifier and predefines a linear classifier.
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