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Abstract

Feature selection has been proven to be efficient in preparing
high dimensional data for data mining and machine learning.
As most data is unlabeled, unsupervised feature selection has
attracted more and more attention in recent years. Discrim-
inant analysis has been proven to be a powerful technique
to select discriminative features for supervised feature selec-
tion. To apply discriminant analysis, we usually need label
information which is absent for unlabeled data. This gap
makes it challenging to apply discriminant analysis for unsu-
pervised feature selection. In this paper, we investigate how
to exploit discriminant analysis in unsupervised scenarios to
select discriminative features. We introduce the concept of
pseudo labels, which enable discriminant analysis on unla-
beled data, propose a novel unsupervised feature selection
framework DisUFS which incorporates learning discrimina-
tive features with generating pseudo labels, and develop an
effective algorithm for DisUFS. Experimental results on dif-
ferent types of real-world data demonstrate the effectiveness
of the proposed framework DisUFS.

1 Introduction

High-dimensional data is common in many real-world ap-
plications such as data mining, machine learning, computer
vision and image processing. Data with high dimensional-
ity not only significantly increases the time and memory re-
quirements of algorithms, but also can degenerate their per-
formance due to the curse of dimensionality and the exis-
tence of irrelevant dimensions [1]. Feature selection, select-
ing a subset of most relevant features for a compact and ac-
curate presentation, is proven to be an effective and efficient
way to handle high-dimensional data [2, 3, 1].

Based on whether the training data is labeled or not,
feature selection methods are broadly divided into super-
vised methods and unsupervised methods. Supervised fea-
ture selection selects features with the capability to distin-
guish samples from different classes [4, 5, 6, 7, 8]. As
most data is unlabeled, unsupervised feature selection at-
tracts increasing attention in recent years [9, 10, 11]. For
unsupervised feature selection, the definition of relevance of
features becomes unclear due to the lack of label informa-
tion [12, 13, 14], hence, it is a less constrained problem and
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particularly difficult [10, 3, 15, 16].
Without label information to define feature relevance, a

number of alternative criteria have been proposed for unsu-
pervised feature selection such as data variance, data similar-
ity [10, 15, 17] and data separability [18, 14]. However, most
existing criteria for unsupervised feature selection neglects
the discriminative information of features, which has been
demonstrated to be important in data analysis [16]. Discrim-
inant analysis plays a crucial role in supervised feature selec-
tion [19]. It aims to select discriminative features such that
within-class distance is as small as possible while between-
class distance is as large as possible [5]. Previous studies
showed that algorithms based on discriminant analysis such
as Fisherscore [5] and Linear Discriminant Feature Selec-
tion [20] can select discriminative features for classification
and are the state-of-the-art supervised feature selectional-
gorithms [15, 21, 22]. The work of discriminant analysis is
often associated with the availability of label information,
which is unavailable for unlabeled data. This gap makes per-
forming discriminant analysis on unlabeled data challenging.

In this paper, we investigate how to employ discriminant
analysis for unsupervised feature selection to select discrim-
inative features and propose a novel feature selection frame-
work DisUFS which can select a set of discriminative fea-
tures simultaneously for unlabeled data. Our contributions
are summarized as,

• Introducing the concept of pseudo labels to enable us to
perform discriminant analysis on unlabeled data;

• Proposing an unsupervised feature selection framework
DisUFS which combines learning discriminative fea-
tures and generating pseudo-labels;

• Developing an efficient algorithm to address the opti-
mization problem of DisUFS; and

• Evaluating the proposed framework DisUFS systemat-
ically on various types of real-world datasets to under-
stand the working of DisUFS.

The rest of this paper is organized as follows. Our un-
supervised feature selection framework based on discrimi-
nant analysis DisUFS is introduced in Section 2. In Section
3, an alternating optimization method is developed to opti-
mize the proposed framework DisUFS. Empirical evaluation



is presented in Section 4 with discussion. In Section 5, we
briefly review related work. The conclusion and future work
are presented in Section 6.

2 The Proposed Unsupervised Feature Selection
Framework

Let F = {f1, f2, . . . , fm} be the set of features wherem is
the number of features andX = [x1,x2, . . . ,xn] ∈ R

m×n

be a set of unlabeled data wheren is the number of data
points. For simplicity, we assume that the data points inX

are centered, that is,
∑n

i=1 xi = 0, which can be realized as
X = XP whereP = In −

1
n
1n1

⊤
n .

To address the challenges presented by the lack of
label information for discriminant analysis, we introducethe
concept of pseudo labels. In detail, we assume that thesen
unlabeled data points can be assigned withk pseudo labels
C = {c1, c2, . . . , ck}. Let H ∈ R

n×k be pseudo labels
indicator matrix whereH(i, j) = 1 if xi is assigned thej-th
label, zero otherwise. We further defineY as the weighted
pseudo label indicator matrix, which can be obtained from
H as below,

Y = H(H⊤H)−
1

2 ,

where thei-th column ofY is given by

(2.1) Y(i, :) = π(

n−hi
︷ ︸︸ ︷

0, . . . , 0,

hi
︷ ︸︸ ︷

1, . . . , 1)/
√

hi,

wherehi is the number of data points with thei-th pseudo
labelci andπ(·) is the permutation function.

With pseudo labels, we can apply discriminant analysis
to unlabeled data. Denoteµi =

∑

x∈ci
x/hi as the mean

vector of thei-th pseudo labelci. We first define within-
cluster scatter, between-cluster scatter and total scatter ma-
trices based on pseudo labels as

Sw =

k∑

i=1

∑

xj∈ci

(xj − µi)(xj − µi)
⊤,

Sb =

k∑

i=1

hiµiµ
⊤
i = XYY⊤X⊤,

St = XX⊤,

where Tr(Sw) captures the within-cluster distance, and
Tr(Sb) captures the between-cluster distance. It is easy to
verify that

St = Sw + Sb.(2.2)

Then linear discriminant analysis aims to obtain a lin-
ear transformationW ∈ R

m×b that projectsX from m-
dimensional space tod-dimensional space (b < m) such that

the within-cluster distance is minimized while the between-
cluster distance is maximized as

maxTr
(
(W⊤StW)−1W⊤SbW

)
.(2.3)

The introduction of pseudo labels allows us to perform
discriminant analysis on unlabeled data as in Eq. (2.3) and
then our unsupervised feature selection framework DisUFS
based on discriminant analysis can be formulated as the
following optimization problem,

max
W,Y

Tr
(
(W⊤XX⊤W)−1W⊤XYY⊤X⊤W

)

− α‖W‖2,1,

s.t. yi = π(

n−hi
︷ ︸︸ ︷

0, . . . , 0,

hi
︷ ︸︸ ︷

1, . . . , 1)/
√

hi,

k∑

i=1

hi = n(2.4)

where‖W‖2,1 is theℓ2,1-norm ofW, which is defined as
follows:

(2.5) ‖W‖2,1 =

m∑

i=1

√
√
√
√

k∑

j=1

W2(i, j) =

m∑

i=1

‖W(i, :)‖2.

The term‖W‖2,1 in Eq. (2.4) is introduced to control
the capacity ofW and also ensure thatW is sparse in
rows. Since each row ofW corresponds to a feature inF ,
the term‖W‖2,1 makesW particularly suitable for feature
selection. In detail, we can rank featuresfi|

m
i=1 according to

‖W(i, :)‖2|
m
i=1 in descending order and select top-K ranked

features whereK is the number of features we want to select.
The parameterα is introduced to control the sparsity ofW.

The significance of the introduction of pseudo labels
to the proposed framework DisUFS is two-fold. First,
with pseudo labels, we can perform discriminant analysis
on unlabeled data. Second, with pseudo labels, we can
do unsupervised feature selection in an supervised manner.
However, the introduction of pseudo labels also brings about
new challenges to optimize Eq. (2.4). In the following
section, we will introduce an optimization algorithm to seek
an optimal solution for Eq. (2.4).

3 An Optimization Method for DisUFS

The optimization problem of DisUFS mixesℓ2,1-norm op-
timization onW with integer programming onY and it is
difficult to addressℓ2,1-norm optimization and integer pro-
gramming simultaneously. We note thatℓ2,1-norm optimiza-
tion on W and integer programming onY are decoupled
if we optimizeW andY separately. This observation mo-
tivates us to adopt an alternating optimization to solve this
problem, which works well for a number of practical opti-
mization problems [23]. Under this scheme, we updateW

andY in an alternating manner.



3.1 Given Y, Computing W When Y is fixed, W is
obtained by the followingℓ2,1-norm optimization problem,

max
W

Tr
(
(W⊤XX⊤W)−1W⊤XYY⊤X⊤W

)

− α‖W‖2,1.(3.6)

Recently there have been many methods proposed to
solve theℓ2,1-norm optimization problem [24, 8, 25]. How-
ever, the problem in Eq. (3.6) is different from existing
ones due to the term of(W⊤XX⊤W)−1. Directly solving
Eq. (3.6) is difficult; thus, we will introduce an algorithm to
solve Eq. (3.6) indirectly with the following theorem.

THEOREM 3.1. Maximizing

Tr
(
(W⊤XX⊤W)−1W⊤XYY⊤X⊤W

)
(3.7)

is equivalent to minimizing the following problem:

‖X⊤B−G‖2F ,(3.8)

under the condition: rank(St) = rank(Sb) + rank(Sw), where
B ∈ R

m×k andG is a special pseudo label indicator matrix
as follows:

G(i, k) =







√
n
hk
−

√
hk

n
if xi ∈ ck,

−
√

hk

n
otherwise

(3.9)

In addition, the optimal solution of Eq. (3.7)W and the
optimal solution of Eq. (3.8)B have the following relation,

BQ = [W,0],(3.10)

whereQ is a orthogonal matrix, i.e.,Q⊤Q = QQ⊤ = I.

Proof. The detailed proof process is similar to that of equiv-
alence between linear discriminant analysis and multi-label
least square in [26]. Note that the condition in Theorem 3.1
is usually satisfied for high-dimensional data [26], which is
usually the case in feature selection problem.�

Next we will find an equivalent formulation for Eq. (3.6)
with the help of Theorem 3.1, and we begin with the follow-
ing lemma.

Lemma 3.1 If BQ = [W,0] andQ is an orthogonal
matrix, then

‖B(i, :)‖2 = ‖W(i, :)‖2.(3.11)

Proof. SettingC = BQ andD = [W,0], we have

‖C(i, :)‖2 = ‖B(i, :)Q‖2

=
√

B(i, :)QQ⊤B⊤(i, :) = ‖B(i, :)‖2,

and‖D(i, :)‖2 = ‖W(i, :)‖2. Since‖C(i, :)‖2 = ‖D(i, :
)‖2, we can obtain that‖B(i, :)‖2 = ‖W(i, :)‖2, which
completes the proof.�

Lemma 3.1 indicates that theℓ2,1-norm ofB is equal to
that ofW. With Theorem 3.1 and Lemma 3.1, the maxi-
mization problem in Eq. (3.6) is equivalent to the following
minimization problem:

min
B

‖X⊤B−G‖2F + α‖B‖2,1,(3.12)

where the optimal solutions ofB andW have the relation
BQ = [W,0].

The ℓ2,1-norm minimization problem in Eq. (3.12) is
well studied [24, 8, 25] and in this paper, we adopt the
optimization method in [8, 25] to obtainB as shown in the
following theorem.

THEOREM 3.2. B in Eq. (3.12) can be updated by

B→ (XX⊤ + αΩ)−1XG,(3.13)

which can monotonically reduce the objective value.Ω is a
diagonal matrix and itsi-th diagonal element is defined as

Ω(i, i) =
1

2‖B(i, :)‖2
.(3.14)

Proof. Using LW to denote the objective function of
Eq. (3.12), we take the derivative ofLW ,

∂LW

∂W
= 2XX⊤B− 2XG+ 2αΩB.(3.15)

XX⊤ is a semi-positive definite matrix and therefore
XX⊤ + αΩ is a positive definite matrix. Setting the deriva-
tive to zero, we can obtain the update rule in Eq. (3.16),

(3.16) B = (XX⊤ + αΩ)−1XG,

Similar to [8, 25], we can prove that the update rule
in Eq. (3.13) monotonically reduces the objective value of
Eq. (3.12), which completes the proof.

According to Theorem 3.2, we can obtain an optimal
solution ofB. However, we still do not know the optimal
solution ofW from B since we do not know the specific
form of the orthogonal matrixQ, which is difficult to
obtain [26]. ActuallyW plays two roles in our framework
- selecting features and computingY. Lemma 3.1 indicates
that theℓ2,1-norm ofB is equal to that ofW. Therefore,
B can replaceW in terms of selecting features. IfB can
also replaceW to computeY, we can useB to replaceW
in our framework, which significantly reduces the difficulty
of optimizing our framework. In the following subsection,
we will demonstrate thatB can also replaceW to compute
pseudo label matrixY.



3.2 Given W, Computing Y When W is fixed, Y is
obtained via solving the following problem,

max
Y

Tr
(
(W⊤XX⊤W)−1W⊤XYY⊤X⊤W

)

s.t. yi = π(

n−hi
︷ ︸︸ ︷

0, . . . , 0,

hi
︷ ︸︸ ︷

1, . . . , 1)/
√

hi,

k∑

i=1

hi = n(3.17)

Next we will show thatB can replaceW in Eq. (3.17)
to computeY with the following lemma.

Lemma 3.2 If BQ = [W,0] andQ is a orthogonal
matrix, then

Tr
(
(W⊤XX⊤W)−1W⊤XYY⊤X⊤W

)

is equivalent to

Tr
(
(B⊤XX⊤B)−1B⊤XYY⊤X⊤B

)

Proof. It is easy to verify that

Tr
(
(W⊤XX⊤W)−1W⊤XYY⊤X⊤W

)

= Tr
(
((BQ)⊤XX⊤BQ)−1(BQ)⊤XYY⊤X⊤BQ

)
,

we have

((BQ)⊤XX⊤BQ)−1 = (Q⊤B⊤XX⊤BQ)−1

= Q−1(B⊤XX⊤B)−1(Q⊤)−1.(3.18)

SinceQ is a orthogonal matrix, we have,

Q−1 = Q⊤, (Q⊤)−1 = Q.(3.19)

With Eq. (3.18) and Eq. (3.19), we can obtain,

Tr
(
((BQ)⊤XX⊤BQ)−1(BQ)⊤XYY⊤X⊤BQ

)

= Tr
(
Q⊤(B⊤XX⊤B)Q(BQ)⊤XYY⊤X⊤BQ

)

= Tr
(
(B⊤XX⊤B)B⊤XYY⊤X⊤B

)
(3.20)

which completes the proof.�

Lemma 3.2 indicates thatB can replaceW to compute
Y. Therefore, Eq. (3.17) can be rewritten as the following
optimization problem,

max
Y

Tr
(
(B⊤XX⊤B)−1B⊤XYY⊤X⊤B

)

s.t. yi = π(

n−hi
︷ ︸︸ ︷

0, . . . , 0,

hi
︷ ︸︸ ︷

1, . . . , 1)/
√

hi,

k∑

i=1

hi = n(3.21)

whereB is learnt by Theorem 3.2.
We develop the following theorem to solve the integer

programming problem in Eq. (3.21).

THEOREM 3.3. The optimalY can be computed by solving
a kernel K-means problem withX⊤B(B⊤XX⊤B)−1B⊤X

as the kernel Gram matrix.

Proof. SinceTr(AC) = Tr(CA) for any two matricesA
andC, Eq. (3.21) can be reformed as

max
Y

Tr
(
Y⊤X⊤B(B⊤XX⊤B)−1B⊤XY

)

s.t. yi = π(

n−hi
︷ ︸︸ ︷

0, . . . , 0,

hi
︷ ︸︸ ︷

1, . . . , 1)/
√

hi,

k∑

i=1

hi = n(3.22)

It is easy to verify thatX⊤B(B⊤XX⊤B)−1B⊤X is a semi-
definite matrix, which can be a kernel Gram matrix. Accord-
ing to [27, 28, 29], the optimalY can be obtained via solving
a kernel K-means problem withX⊤B(B⊤XX⊤B)−1B⊤X

as the kernel Gram matrix, which completes the proof�

3.3 The Proposed Algorithm Lemma 3.1 indicates that
theℓ2,1-norm ofB is equal to that ofW, while Lemma 3.2
indicates thatB can replaceW to computeY. These two
lemmas suggest thatB can replaceW for DisUFS. Instead
of computingW andY, it is much easier to computeB and
Y. We develop an alternating optimization method for Dis-
UFS via alternatively solving the following two optimization
problems forB andY, respectively.

• The optimization problem forB is

min
B

‖X⊤B−G‖2F + α‖B‖2,1.(3.23)

• The optimization problem forY is

max
Y

Tr
(
Y⊤X⊤B(B⊤XX⊤B)−1B⊤XY

)

s.t. yi = π(

n−hi
︷ ︸︸ ︷

0, . . . , 0,

hi
︷ ︸︸ ︷

1, . . . , 1)/
√

hi,

k∑

i=1

hi = n(3.24)

Theorem 3.2 and Theorem 3.3 provide updating rules
for B and Y respectively, and the detailed optimization
algorithm for DisUFS is presented in Algorithm 1.

We briefly review Algorithm 1. In line 4, we construct
G from Y according to Eq. (3.9). Based on Theorem 3.2,
we updateB in line 5 and constructΩ in line 6. In line
7, we updateY according to Theorem 3.3. Originally the
importance of thei-th feature is indicated by‖W(i, :)‖2.
However, with Lemma 3.1, we have‖B(i, :)‖2 = ‖W(i, :
)‖2. Therefore, in line 9, we rank features in descending
order according to‖B(i, :)‖2.



Algorithm 1 The Proposed Unsupervised Feature Selection
Framework - DisUFS
Input: X, the number of pseudo labelsk, α, and the number
of features to selectK
Output: K most relevant features

1: InitializeY via performing k-means onX
2: InitializeΩ as an identity matrix
3: while Not convergentdo
4: ConstructG fromY

5: UpdateB: B← (XX⊤ + αΩ)−1XG

6: Update the diagonal matrixΩ, where thei-th diagonal
element is 1

2‖B(i,:)‖2

7: UpdateY via solving a kernel K-means problem
with X⊤B(B⊤XX⊤B)−1B⊤X as the kernel Gram
matrix

8: end while
9: Sort each feature according to‖B(i, :)‖2 in descending

order and select the top-K ranked ones;

Time Complexity : The most time-consuming opera-
tions for Algorithm 1 are to updateB in the line 5 andY in
the line 7.

• B ← (XX⊤ + αΩ)−1XG can be efficiently obtained
by solving the linear equation(XX⊤ + αΩ)B = XG,
which needsO(km2).

• To obtain Y, we need to solve a kernel K-means
problem withX⊤B(B⊤XX⊤B)−1B⊤X as the kernel
Gram matrix, which takesO(kmn+ km2).

In summary, the total time complexity of Algorithm 1 is
#iterations ∗O(km(m+ n)).

4 Experiments

In this section, we conduct experiments to evaluate the ef-
fectiveness of DisUFS. After introducing experimental set-
tings, we compare DisUFS with the state-of-the-art unsuper-
vised feature selection methods. Further experiments are de-
signed to investigate the effects of parameters (the numberof
pseudo labelsk andα) on DisUFS.

4.1 Experimental Settings We choose four benchmark
data sets of different types, e.g. image data (PIX10P and
PIE10P) and microarray data (CLL-SUB-111 and TOX-
171), to test the performance of unsupervised feature selec-
tion1. Some statistics of these datasets are shown in Table 1.

Following the common way to evaluate unsupervised
feature selection algorithms, we assess DisUFS in terms of
clustering performance [15, 16]. In detail, we first apply

1These data sets are publicly available from http:// featureselec-
tion.asu.edu/datasets.php.

Table 1: Statistics of the Data Sets
Datasets Size # of Features # of Classes
PIX10P 100 10,000 10
PIE10P 210 2,420 10

CLL-SUB-111 111 11,340 3
TOX-171 171 5,748 4

unsupervised feature selection algorithms to select features
and then perform k-means with the selected features. Since
k-means often converges to local minima, we repeat each
experiment10 times and report the average performance.

Two commonly used metrics,accuracy and normal-
ized mutual information(NMI), are employed to evalu-
ate the quality of clusters2. How to determine the op-
timal number of selected features is still an open prob-
lem [25] thus we vary the numbers of selected features as
{20, 50, 70, 100, 120, 150, 170, 200, 250, 300}.

4.2 Quality of Selected Features We compare DisUFS
with the following three representative unsupervised feature
selection algorithms:

• UDFS [16] selects features in batch mode by simulta-
neously exploiting local discriminative information and
feature correlation;

• MCFS [14] selects features using spectral regression
with ℓ1-norm regularization;

• Laplacian Score [10] evaluates the importance of a
feature through its power of locality preservation.

MCFS and Laplacian Score are not based on discrim-
inate analysis, while UDFS and DisUFS are based on dis-
criminate analysis. The major differences between UDFS
and DisUFS are two-fold. First, UDFS exploits the local dis-
criminative information while DisUFS performs global dis-
criminant analysis with the help of pseudo labels. Second,
the optimization problems for UDFS and DisUFS are very
different. The parameters in all methods are determined via
cross-validation. For DisUFS, we set the number of pseudo
labelsk to 20 in PIX10P and PIE10P, while we setk to 25 in
CLL-SUB-11 and TOX-171. More details about the effects
of parameters on DisUFS will be discussed in the later sub-
sections. The comparison results in terms of accuracy and
NMI are shown in Figures 1 and 2, respectively. We make
the following observations,

• With the increase of the number of selected features,
clustering performance trends to first increase and then
degrade. LapScore, MCFS and UDFS obtain compara-
ble results on all data sets.

2We use the source code from http://www.zjucadcg.cn/ deng-
cai/Data/Clustering.html.
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(d) TOX-171

Figure 1: Comparison of Different Unsupervised Feature Selection Algorithms w.r.t. Accuracy.

• DisUFS consistently obtains better performance than
UDFS. We perform a t-test on the results of DisUFS
and UDFS, and the testing results suggest that the im-
provement of DisUFS over UDFS is significant. These
results indicate that global discriminant analysis with
pseudo labels is more likely to select discriminative fea-
tures than local discriminant analysis.

• Most of the time, DisUFS outperforms all the baseline
methods. Compared to the best performance of base-
line methods, on average DisUFS obtains7.78% rela-
tive improvement in terms of accuracy. Similarly, a t-
test is performed to investigate the significance and all
results suggest the improvement of DisUFS is signifi-
cant. These results further demonstrate the capability
of discriminant analysis for unsupervised feature selec-
tion with pseudo labels.

In summary, DisUS performing discriminant analysis
with pseudo labels can improve unsupervised feature selec-
tion performance in terms of clustering. In the following
subsections, we will investigate the impact of the number of
pseudo labels on DisUFS in detail.

4.3 Impact of Numbers of Pseudo labels In this subsec-
tion, we investigate the effect of the number of pseudo labels

(k) on the proposed framework DisUFS. We vary the num-
bers of pseudo labels as{3, 5, 7, 10, 15, 20, 25, 30, 35, 40}.
The performance variation with respect tok and the num-
ber of selected features is depicted in Figure 3. Note that
we only show the performance in terms of accuracy since we
have similar observations in terms of NMI.

Most of the time, with the increase ofk, the performance
first increases gradually, reaches its peak value and then
degrades. Whenk is too small, pseudo labels cannot fully
capture the cluster structure of the data, while DisUFS will
overfit the data with a large number of pseudo labels. This
pattern can be used to determine the optimal value ofk. We
also note that the best performance is achieved when the
number of pseudo labels is larger than the actual number of
classes. For each dataset, the performance is not sensitiveto
k whenk is in a certain region such ask is from 10 to 30 in
CLL-SUB-11.

4.4 Impact of α The parameterα, controlling the row
sparsity ofW, plays an important role in DisUFS for feature
selection. We investigate the effect ofα by analyzing how
changes ofα affect the performance of DisUFS. We vary the
value ofα as{0.1, 0.5, 1, 10, 100, 500, 1e3, 5e3, 7e3, 1e4}.
The performance variance w.r.t.α and the numbers of
selected features is demonstrated in Figure 4. We only
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Figure 2: Comparison of Different Unsupervised Feature Selection Algorithms in terms of NMI.

show the results in terms of accuracy since we have similar
observations in terms of NMI.

With the increase ofα, we observe a similar pattern to
that with the increase of the number of pseudo labelsk - per-
formance first increases and then decreases, demonstrating
the capability ofℓ2,1-norm in feature selection. We also note
that betweenα and the number of selected features, DisUFS
is more sensitive to the number of selected features.

5 Related Work

Feature selection can be roughly categorized into supervised
or unsupervised methods based on the training data being
labeled or unlabeled [3, 30]. Supervised methods can be
further divided into filter models [4, 7] and wrapper mod-
els [31, 32]. Filter models separates feature selection from
classifier learning and the bias of a learning algorithm does
not interact with the bias of a feature selection algorithm [4],
while wrapper models adopt the performance of a predeter-
mined learning algorithms to assess the quality of selected
features and can be egregiously expensive to run for data
with a large number of features [5, 6]. Since most data in the
real-world is unlabeled, more and more attention is paid on
unsupervised feature selection [9, 10, 11]. Without class la-
bels, unsupervised feature selection [10, 3, 15] is a less con-

strained search problem and depending on clustering quality
measures [12, 13], and can eventuate many equally valid fea-
ture subsets. With high-dimensional data, it is likely to find
many sets of features that seem equally good without con-
sidering additional constraints.

With label information, discriminant analysis is broadly
adopted by supervised feature selection methods. Fisher
score is one of the most popular methods in this family.
Its key idea is to find a subset of features such that with
the new representation, the distances between instances in
the same class are as small as possible, while the distances
between instances in different classes are as large as pos-
sible [5]. Sparsity regularization, such as theℓ2,1-norm of
a matrix [33], has been widely investigated and applied to
feature selection [34, 24, 8, 35] in dimensionality reduction.
Discriminant analysis with spare learning attracts increasing
attention in supervised feature selection. In [20], the au-
thors proposed a sparse linear discriminant feature selection
framework (LDFS), which is equivalent to solve the follow-
ing problem,

max
W

Tr((W⊤StW)−1(W⊤SbW))

− µ

b∑

i=1

‖W(i, :)‖∞
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Figure 3: Number of Features vs Number of Pseudo labelsk
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Figure 4: Number of Features vsα

where
∑b

i=1 ‖W(i, :)‖∞ is the ℓ1/ℓ∞ norm of W. The
structured sparse transformation matrixW allows LDFS to
achieve feature selection. In [22], an alternative formulation
based on discriminant analysis is proposed, which is equiva-
lent to solve the following problem,,

min
W

1

2
‖X⊤W −H‖2F + µ‖W‖2,1

whereH is a weighted class label matrix, and details about
the definition ofH can be found in [22].

To apply discriminant analysis, we usually need la-
bel information which is absent for unlabeled data. This
gap makes it challenging to apply discriminant analysis for
unsupervised feature selection. In [16], Local discrimina-
tive analysis is performed for unsupervised feature selection
UDFS and it defines local discriminative score to evaluate
the levels of within class scatter and between-class scatter in
a local manner, which is substantially different from our pro-
posed framework DisUFS - (1) DisUFS performs global dis-
criminant analysis with pseudo-labels, while UDFS makes
use of local discriminant analysis; and (2) DisUFS combines
generating pseudo-labels and selecting discriminative fea-
tures into a coherent framework, while UDFS assumes the
class label of input instances can be predicted by a linear
classifier and predefines a linear classifier.

6 Conclusion

Discriminant analysis is widely adopted to select discrimi-
native features for supervised feature selection. Due to the
lack of label information, it is much more difficult to per-
form discriminant analysis for unsupervised feature selec-
tion. In this paper, we propose a novel unsupervised feature
selection framework DisUFS which can select a set of dis-
criminative features simultaneously. To tackle the difficulty
presented by the lack of label information, we introduce the
concept of pseudo-labels, which allows us to perform dis-
criminant analysis on unlabeled data. We combine learning
discriminative features and generating pseudo-labels into a
coherent framework. The optimization problem for DisUFS
mixesℓ2,1-norm optimization with integer programming and
we develop an alternating optimization method for DisUFS.
Experiments are conducted on various types of real-world
datasets and the results show that our proposed framework
outperforms the state-of-the-art unsupervised feature selec-
tion methods.

There are several interesting directions to investigate
in the future. First, the proposed optimization algorithm
can only find a local optimal solution for DisUFS and we
will study optimization algorithms to seek a global solution
for DisUFS. Second, we would like to seek a method to
determine parameters of DisUFS automatically.
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