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ABSTRACT

With the exponential growth of information on the internet, users
have been relying on search engines for finding the precise docu-
ments. However, user queries are often short. The inherent ambi-
guity of short queries imposes great challenges for search engines
to understand user intent. Query suggestion is one key technique
for search engines to augment user queries so that they can better
understand user intent. In the past, query suggestions have been re-
lying on either term-frequency–based methods with little semantic
understanding of the query, or word-embedding–based methods
with little personalization efforts. Here, we present a sequence-to-
sequence-model–based query suggestion framework that is capable
of modeling structured, personalized features and unstructured
query texts naturally. This capability opens up the opportunity to
better understand query semantics and user intent at the same time.
As the largest professional network, LinkedIn has the advantage
of utilizing a rich amount of accurate member profile information
to personalize query suggestions. We applied this framework in the
LinkedIn production traffic and showed that personalized query
suggestions significantly improved member search experience as
measured by key business metrics at LinkedIn.
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1 INTRODUCTION

Search engines have been the most popular way to retrieve infor-
mation for users on the world wide web. However, retrieving the
right content has been increasingly difficult because of the expo-
nential growth of data volume. The inherent ambiguity of search
queries also contributes to this difficulty. Azad and Deepak [1] re-
ported that the majority of search queries are less than five words.
This kind of short text lacks context and promotes ambiguity. For
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example, when a user searches for “engineer jobs”, it is not imme-
diately clear whether the user wants to find “software engineer
jobs”, “mechanical engineer jobs”, or jobs in some other engineering
domains.

On top of that, well-known issues, such as synonymy (different
words sharing the same meaning) and polysemy (one word having
multiple distinct meanings), could further confuse search engines.
To combat those challenges, practitioners have developed different
strategies in information retrieval and ranking. One key strategy
that directly addresses the ambiguity of search queries is query
suggestion (Q.S.).

Q.S. often works by presenting a few related query suggestions
to a user after a search query was issued. Users have the freedom to
choose which one they want to explore. Note that this is different
from automatic query expansion [13], in which search engines im-
plicitly expand the queries without user feedback. We are primarily
interested in the Q.S. problem in this work.

LinkedIn is the largest professional social network. Through
LinkedIn’s search capability, members interact with many different
entities, including (but not limited to) job postings, member profiles,
and content postings. The Q.S. functionality (“Try searching for”,
Figure 1) is a key component of LinkedIn search. In the past, we
experimented with sequence-to-sequence (Seq2Seq) model [15] for
this functionality. Seq2Seq model overcomes challenges that tradi-
tional co-occurrence methods face, such as little understanding of
the query semantics, and only known queries get suggestions or
will be recommended as suggestions. Seq2Seq model summarizes
word semantics through an encoder. Its decoder is a generative
model. Therefore the model could understand word meaning and
can effectively deal with rare or unseen queries. The decoder could
also generate meaningful suggestions that never appeared in the
past search history. Those properties are important for improv-
ing LinkedIn search experience and helping users discover new
opportunities.

However, both traditional methods and vanilla Seq2Seq model
have another drawback: Suggestions are not personalized. Per-
sonalization is a critical need, especially for users with diverse
backgrounds. For example, two LinkedIn users can both search for
“microsoft” (Figure 1). However, a software engineer is more likely
to be looking for “microsoft azure” while a salesperson would be
more interested in “microsoft sales”. Without knowing any personal
information, a model would recommend suggestions irrelevant to
a user’s intent, leading to a poor search experience.

In this work, we further improved our Q.S. system by modeling
both structured, personalized user features and unstructured text
data simultaneously in a Seq2Seq model. Our Q.S. system presented
here includes both offline modeling framework as well as the online
serving infrastructure. The system is general and can be easily
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Figure 1: “Try searching for” on LinkedIn mobile app.

applied in other search engines. Compared with our baseline, non-
personalized Seq2Seqmodel, this work’s main contributions include
the following:

• We examined different strategies of incorporating structured
member features into a Seq2Seq model and compared their
performance in an industrial setting.

• With live production traffic, we showed that personalized
Q.S. significantly improves search experience compared with
the non-personalized version.

• We also studied and presented results on how Q.S. improved
search experience for different job-seeking member seg-
ments in a professional social network setting.

2 RELATEDWORK

Q.S. has a long history of research (for example, Harman [5]). In
this section, we will primarily focus on the personalization efforts
in this space.

Early days of personalization efforts mostly focused on single-
user behavior data. Term-co-occurrence–based method, collabora-
tive filtering method, and term-frequency–based methods all found
their applications in modeling “local user profile” data [4, 16]. The
“local user profile” refers to data stored on a user’s local machine,
such as text documents, emails, and cached web browsing histories.
The limitation of single-user data means that those approaches
would suffer from data sparsity and could not learn shared features
across different users. Later, Mei et al. [11] proposed a bipartite-
graph–based method to derive query suggestions. They were able
to utilize all user data by pooling all data into the same graph.
Their method achieved personalization by attaching a unique user
identifier to each query to form a new “pseudo query”.

Those early efforts did not consider query semantics. In other
words, query suggestions were derived by some form of “associa-
tion rules” without considering the actual meaning of the query.
However, query semantics are very useful. For example, Bouad-
jenek et al. [2] combined the use of the TF-IDF method and term
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Figure 2: Overview of the Seq2Seq model architecture.

semantic similarities on a single user’s document data to derive the
query suggestions. Jayanthi et al. [8] further used phrase semantics
instead of term semantics to derive personalized query suggestions.
Both showed that utilizing query semantics improved the quality
of query suggestions.

In Sordoni et al. [14], the authors explored the use of hierarchical
recurrent encoder-decoder for generating query suggestions. This
method naturally models the query semantics and can generate
unseen query suggestions. Their methodology is the most similar
to ours. However, we have very different focuses: Sordoni et al.
[14] were mostly interested in the context-awareness of the query
suggestions, where context is defined by past search history, while
our focuses are mainly on the personalization with user-features.
Our approach is also battle-tested in a large scale industrial setting.

3 MODELING APPROACH

We used a Long Short-Term Memory (LSTM) [6] based Seq2Seq
model. Our model follows Luong et al. [10] and is introduced briefly
here.

3.1 Seq2Seq model

A Seq2Seqmodel consists of a decoder and an encoder. In our model,
both the decoder and the encoder are recurrent neural networks
(RNN) with two layers of stacked LSTM hidden units (Figure 2).
The objective function we seek to optimize is (the logarithm of) the
conditional probability:

𝑙𝑜𝑔 𝑃 (𝑦 |𝑥) = Σ𝑘𝑖=1𝑙𝑜𝑔 𝑝 (𝑦𝑖 |𝑦1, 𝑦2, . . . , 𝑦𝑖−1, s)
where 𝑥1, 𝑥2, . . . , 𝑥𝑘 are the word embeddings of the input source
query, 𝑦1, 𝑦2, . . . , 𝑦𝑘 are the output words of the target sequence,
and s is the hidden representation of the source query learned by
the encoder. In addition, the model uses an attention mechanism
[10]. Therefore, the objective function can be written as:

𝑝 (𝑦𝑖 |𝑦1, 𝑦2, . . . , 𝑦𝑖−1, s) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑠ℎ̃𝑖 )
where

ℎ̃𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝑐 [𝑐𝑖 ;ℎ𝑖 ]
𝑊𝑠 and𝑊𝑐 are weight metrics; ℎ𝑖 is the RNN hidden unit; 𝑐𝑖 is the
context vector (Figure 2). 𝑐𝑖 is calculated according to the “global
attention” mechanism in Luong et al. [10].

3.2 Personalization strategy

Seq2Seq models are great at modeling unstructured text data. How-
ever, structured data features have proven extremely powerful in
improving deep neural network (DNN) models [3]. Different strate-
gies of incorporating structured data features into Seq2Seq models
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Figure 3: Two personalization strategies for the encoder.

Table 1: Example source and target queries.

Source Target

talent acquisition specialist recruiter
technical manager java manager
financial analyst financial analyst people in usa

exist, such as Jaech and Ostendorf [7], Mikolov and Zweig [12],
and Johnson et al. [9]. Here, we explored two common practices
of incorporating structured features: “additional vocabulary” and
“embedding concatenation” (Figure 3). In the “additional vocabulary”
strategy, the structured categorical feature acts as an additional
“word” at the beginning of the source query. Its embedding will be
trained together with other word embeddings. For the “embedding
concatenation” strategy, the same categorical feature embedding is
concatenated to each of the word embeddings of the source query.

The “embedding concatenation” strategy may seem to be more
flexible since it allows the model to encode the personal feature
at each position of the source query. However, as shown by Jaech
and Ostendorf [7], this approach effectively only changes the bias
term in the hidden unit updating equation. Therefore its flexibility
is somewhat limited. On the other hand, the “additional vocabulary”
strategy gives the model flexibility to adapt and “attend” to the ad-
ditional personalized feature. As we will show later, the “additional
vocabulary” strategy outperforms the “embedding concatenation”
strategy.

4 EXPERIMENTS

4.1 Datasets

Training data. In our Seq2Seq model, the source query is a user
input query, while the target sequence is a query suggestion. To col-
lect training data, we mined English search query logs at LinkedIn
using the following heuristics: 1). For two queries from the same
user, if they happened within a small time frame, they are collected
as candidate pairs; 2). Candidate pairs that share at least one non-
stop word, or have a high occurrence count in the dataset remain
in the training set. We remove all other candidate pairs, as well as
query pairs that contain people’s names.

The idea behind this data collection heuristic is that users often
reformulate their search queries during a search attempt in order
to improve the search results. We can utilize this kind of user-
reformulation to train our Seq2Seq model. Table 1 shows a few
examples of data points we collected from this procedure. In total,
we have over 150 million training pairs. The majority of queries
have less than five words.

Offline evaluation data. On the LinkedIn mobile app and the
web app, we show a ranked list of query suggestions (Figure 1). An

Table 2: M.R.R. comparison of different models.

Model name Lift w.r.t baseline
1

baseline -
add-vocab 3.97%
concat-100 2.91%
concat-10 1.73%

ideal model should rank the query suggestions that a user is most
likely to click on the top of the list. Therefore, we collected the past
clicks on query suggestions as the evaluation dataset.

4.2 Personalized feature improves Q.S. ranking

LinkedIn is a professional network, and most of its search traffic is
profession-oriented. Therefore we chose a profession related feature
from member profile data and incorporated it into the model using
the personalization strategies mentioned earlier. By modeling users’
professional background directly, we hope to provide more relevant
query suggestions.

We trained models with different personalization strategies on
the same dataset. For the “embedding concatenation” strategy, both
10 dimensions (concat-10) and 100 dimensions (concat-100) of
feature embeddings were trained. Together with the “additional
vocabulary” strategy (add-vocab), we evaluated three models on
the same evaluation dataset. Specifically, we re-ranked the list of
query suggestions in the evaluation dataset by scoring them using
the trained models. The hypothesis is that if a model works better,
it should rank a clicked suggestion higher. We calculated the mean
reciprocal rank (M.R.R.) of all clicked query suggestions across
the evaluation dataset and compare personalized models with the
non-personalized baseline Seq2Seq model in Table 2.

The “embedding concatenation” strategy has a worse perfor-
mance compared with the “additional vocabulary” strategy. As we
mentioned earlier, this is most likely because “embedding concate-
nation” does not provide more model flexibility [7].

Personalization with a professional background feature signif-
icantly improved M.R.R. compared with the baseline model. It is
worth noting that the position bias (the query suggestions on the
top position are naturally more likely to be clicked) works in favor
of the baseline model since it generated the query suggestions in the
evaluation dataset. Even so, personalized models still outperform
the baseline model.

4.3 Personalization improves search metrics

To further confirm personalization does improve query suggestion
ranking in real-world traffic, we implemented the “additional vo-
cabulary” model and tested it in a production environment. We
measured whether the personalization could provide more relevant
query suggestions using the click-through rate (CTR) both on the
query suggestions (CTR-q) and on the overall search results (CTR-r).
The hypothesis is that, if personalized query suggestions are more
relevant than baseline suggestions, users will be more likely to
engage with them. Indeed, our online A/B test showed a signif-
icant 5.62% (p-value 7.8 × 10−14) increase on CTR-q. In addition,

1Absolute metric values are not presented due to corporate confidentiality policies.



Table 3: Online A/B test metrics on different groups of job

seekers. Lift is w.r.t non-personalized query suggestions.

Metric Job seeker group Lift (p value)

search sessions passive job seeker +1.19% (2.1 × 10−3)
active job seeker -0.49% (0.1)

successful search
sessions

passive job seeker +1.24% (0.02)
active job seeker -0.52% (0.14)

CTR-r also improved 0.3% (p-value 0.02) compared with the non-
personalized Seq2Seq model. This result shows that personalized
query suggestions are more engaging and improve the overall user
search experience.

At LinkedIn, we define a search session by the start of a new
search query on the homepage or a time gap of user-inactivity. A
successful session is one in which the user performed some mean-
ingful action, such as saving a job or applying for a job. The number
of successful search sessions is one fundamental business metric
for LinkedIn. We classify users into active and passive job seekers
based on their recent job-related activities, such as applying for
a job. Moreover, we are interested in how changes in the search
engine impact job seeker behaviors. Table 3 shows how personal-
ization impacts different groups of job seekers.

Notably, personalization has a more significant impact on pas-
sive job seekers. We believe passive job seekers are more easily
encouraged to follow the personalized query suggestions to start
new searches because those suggestions are more relevant to their
background and intent. For the same reason, those query sugges-
tions can retrieve more attractive search results, leading to a better
overall search experience. Active job seekers, on the other hand,
may already have a good idea for what they want. The query sug-
gestions provided by our model, therefore, has less impact on them.

5 ONLINE SERVING STRATEGY

A significant challenge for applying a DNN to production online
inference is the large latency it incurs. However, in our particular
application, the Q.S. service and the search retrieval and ranking
process can be parallelized because they are independent of each
other. We also added an in-memory cache to help reduce latency
because the same input source query should always output the
same target query suggestions for the same model. Figure 4 shows
our online serving architecture. This strategy worked well: With
tens of millions of requests served per day, we achieved an average
latency of 23 ms and a 99𝑡ℎ percentile of 70 ms.

6 CONCLUSIONS

In this work, we presented a query suggestion framework based
on recurrent neural networks. The framework models both struc-
tured user features as well as unstructured text data. In our offline
experiments, we showed that modeling both data gave a better
performance than modeling text data alone. We further showed
that treating the categorical user-feature as an “additional vocab-
ulary” not only was straightforward to implement but also gave
better performance compared with concatenating the user feature
embedding to word embeddings.
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Figure 4: Online serving architecture of Q.S. service.

A/B test on live traffic confirmed our offline experiment observa-
tions. Personalization boosted core business metrics for LinkedIn
search. Different user segments benefited differently from person-
alized query suggestions. We showed that passive job seekers are
more likely to benefit from better query suggestions experience.

This framework is a production-grade, deep-learning–based
query suggestion framework. The online serving strategy presented
in this work enabled us to make real-time inferences from deep
learning models. Our system is general and can be applied to other
search engines as well.
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