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Abstract The rapid growth of location-based social networks (LBSNs) has greatly

enriched people’s urban experience through social media and attracted increasing

number of users in recent years. Typical location-based social networking sites al-

low users to “check in” at a physical place and share the location with their online

friends, and therefore bridge the gap between the real world and online social net-

works. The availability of large amounts of geographical and social data on LBSNs

provides an unprecedented opportunity to study human mobile behavior through

data analysis in a spatial-temporal-social context, enabling a variety of location-

based services, from mobile marketing to disaster relief. In this chapter, we first

introduce the background and framework of location-based mobile social network-

ing. We next discuss the distinct properties, data analysis and research issues of

location-based social networks, and present two illustrative examples to show the

application of data mining to real-world location-based social networks.
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1 Introduction

The wide use of mobile devices and location-based services in the world has gener-

ated a new concept of online social media, namely location-based social networks

(LBSNs). Location-based social networking sites use GPS, Web 2.0 technology

and mobile devices to allow people to share their locations (usually referred to as
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“check-in”), find out local Points of Interest and discounts, leave comments on spe-

cific places, connect with their friends, and find other friends who are nearby. A

recent survey from the Pew Internet and American Life Project reports that over

the past year, smartphone ownership among American adults has risen from 35% in

2011 to 46% in 2012. Almost three-quarters (74%) of smartphone owners use their

phone to get real-time location-based information such as getting directions or rec-

ommendations. Meanwhile, 18% of smartphone owners use geosocial services, like

Foursquare1, Gowalla2, and Facebook Places3, to “check in” to certain locations and

share them with their friends, while this percentage has risen from 12% in 2011 [82].

It is anticipated that more than 82 million users will subscribe to location-based so-

cial networking services by 2013 [51], and location-based marketing will be a $1.8

billion business worldwide by 2015 [52]. Such rapid growth of location-based social

networks has led to the availability of a large amount of user data, which consists of

both the geographical trajectories and the social friendships of users, providing both

opportunities and challenges for researchers to investigate users’ mobile behavior in

spatial, temporal and social aspects.

Typical online location-based social networking sites provide location-based ser-

vices that allow users to “check in” at physical places, and automatically include

the location into their posts. “Check-in” is an online activity that posts a user’s cur-

rent geographical location to tell his friends when and where he is through social

media. Compared with many other online activities (following, grouping, voting,

tagging, etc.) that interact with the virtual world, “check-in” reflects a user’s geo-

graphical action in the real world, residing where the online world and real world

intersect. In this scenario, “check-in” not only adds a spatial dimension to the on-

line social networks, but also plays an important role in bridging the gap between

the real world and the virtual world. Thus, the study of check-ins on location-based

social networks provides an ideal environment to analyze users’ real world behav-

ior through virtual media, and could potentially improve a variety of location-based

services such as mobile marketing [3, 5, 62], disaster relief [29, 21, 25], and traffic

forecasting [6, 19].

The first commercial location-based social networking service available in the

U.S. is Dodgeball4, launched in 2000. It allows users to “check in” by broadcast-

ing their current locations through short messages to their friends who are within

a 10 block radius; users can also send “shouts” to organize a meeting among

friends at a specific place. After acquired by Google in 2005, the original Dodgeball

has been replaced with Google Latitude in 2009, while the founder of Dodgeball

launched a new location based social networking service “Foursquare” in the same

year. Foursquare utilizes a game mechanism in which users can compete for vir-

tual positions, such as mayor of a city, based on their check-in activities. It has

reached 20 million users by April, 2012 [39], becoming one of the most successful

1 http://foursquare.com/
2 Facebook acquired Gowalla at the end of 2011: http://www.pcmag.com/article2/0,2817,2401433,00.asp
3 http://www.facebook.com/about/location
4 http://en.wikipedia.org/wiki/Dodgeball
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location-based social networking sites in the United States. Facebook also launched

its location-based service, namely Facebook Places in 2010 with its check-in func-

tion, and acquired another popular LBSN, Gowalla5, at the end of 2011. All these

location-based social networking sites share a “3+1” framework, i.e., 3 layers and 1

timeline, as shown in Figure 1.

4/3/2012 9/5/2012

5/1/2012 6/1/2012 7/1/2012 8/1/2012 9/1/2012

TipsPhotos

VideosAudios
Content Layer

Social Layer

Geographical 
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Fig. 1 The information layout of location-based social networks

The geographical layer contains the historical check-ins of users, while the social

layer contains social friendship information, and the content layer consists of user

feedbacks or tips about different places. All these three layers share one timeline,

indicating the temporal information of the user “check-in” behavior. Previous re-

search has investigated the social and content layers with traditional online social

network data[33], and analyzed the geographical and content layers with mobile

phone data [11]. Compared to them, location-based social network data has an addi-

tional geographical layer which is not available in traditional online social networks,

5 http://en.wikipedia.org/wiki/Gowalla
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and an explicit social layer which is not available from mobile phone data (usually

social friendship information from mobile phone data is derived through smartphone

proximity network). The unique geographical property and the social network infor-

mation presents new challenges for data analysis on location-based social network

data, since traditional approaches on social network or mobile phone data may fail

due to the lack of pertinence. Furthermore, the “3+1” data structure defines six dif-

ferent types of networks, i.e., location-location network, user-user network, content-

content network (e.g., word-word network), user-location network, user-content net-

work, and location-content network. Each one can be mined together with the tem-

poral information provided by the timeline, indicating more opportunities for data

analysis on LBSNs. Therefore, data analysis techniques specifically designed for

LBSNs can efficiently deal with these distinct properties, and help understand user

behavior for research and business purposes.

The rest of this chapter is organized as follows. We first introduce the distinct

properties of location-based social network data in Section 2, then discuss the data

analysis and research issues in Section 3, followed by two real-world examples of

applying data mining to location-based social networks in Section 4, and provide

some conclusions with future work in Section 5.

2 Distinct Properties of Location-Based Social Network Data

Location-based social networks provide data consisting of both geographical infor-

mation and social networks. Compared to traditional online social network data and

mobile phone data, location-based social network data have distinct properties in

several aspects.

1. Geographical Property

One of the most significant differences between LBSNs and traditional online

social networks is the geographical property, which is considered as the unique

facet of location-based social networks. Users on LBSNs are able to check in

at a physical place, and let their friends be aware of this check-in. The check-in

location indicates the current geographical status of a user in the real world, and

generates the local social networks of the user based on this location. In this sce-

nario, the geographical check-in locations bridge the gap between the real world

and online social networks [17, 22], which in turn reflect the user’s behavior more

closely to the real world compared with other online social networks, and pro-

vide an unprecedented opportunity to study a user’s real-world behavior through

social media. Researchers have studied the distinctions between online and of-

fline social networks [17], differences between location-based social networks

and content-based social networks [58], and relationship between geographical

distance and friendship [60, 14], etc. These analyses exploit many fundamental

user mobile patterns and motivate us to make use of geographical properties for

the development of better location-based services.
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2. Large-Scale Mobile Data

The increasing use of mobile devices and popular location-based mobile social

networking sites has led to the massive availability of mobile data. Compared

with the traditional cellphone data which is usually collected through telecom-

munication carriers with limited number of users [80, 20], location-based social

networking services utilize Web 2.0 technology combined with GPS on mobile

devices, generating a large amount of geographical and social information from

millions of users [10, 60]. For example, Google Latitude reported 10 million ac-

tive users in 2011 6, Yelp had approximately 71 million unique visitors monthly

on average in the first quarter of 2012 7, and Foursquare reached 20 million users

and 2 billion check-ins by April, 2012 [39]. Researchers can easily obtain these

data through public APIs provided by location-based social networking sites, en-

abling the large-scale data analysis of user behavior in a spatial, temporal and

social context [13, 60, 22].

3. Accurate Description of Geolocations

Location-based mobile social networking sites provide more accurate location

descriptions than traditional geo-tagged data. For example, in location-based so-

cial networks, it is easy to distinguish two adjacent restaurants on a street, two

nearby stores in a fashion square, or a pharmacy located upstairs of a bar. This

is because the traditional geo-tagged data only provide the longitude and latitude

of a location, while location-based social networking sites such as Foursquare

and Facebook places could provide additional textual descriptions for popular

venues, e.g., categories, comments, and tips, therefore promoting a variety of

location-based applications from location recommendation [75] to urban com-

puting [16] by endowing the physical places with semantic meaning.

4. Data Sparseness

In traditional cell phone data, user’s geographical location is automatically

recorded by the telecommunication tower, while on location-based social net-

works, the check-in process is user-driven [48], i.e., the user decides whether to

check in at a specific place or not due to certain privacy concerns. For example,

a user may usually check in at Starbucks in New York, but with the latest check-

in at SeaWorld in San Diego, or check in continuously at the same restaurant

many times. Some users even have more than one-year gaps between consec-

utive check-ins. Such check-in behavior leads to the significant sparseness of

geographical data in location-based social networks, which greatly increases the

difficulty of data analysis, especially in investigating human mobility patterns.

5. Explicit Social Friendship

The social networks on location-based social networking sites consist of social

friendship information explicitly defined by users (a user can explicitly add an-

6 http://techcrunch.com/2011/02/01/google-latitude-check-in/
7 http://www.yelp-press.com/phoenix.zhtml?c=250809&p=irol-press
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other user as a friend), while in traditional cell phone data, the social network

is usually collected through user study [43, 20], or derived from communication

network or bluetooth network [73]. This property enables more accurate and ef-

ficient data analysis and evaluation on location-based social networks, especially

for applications like friend recommendation and location privacy control [38].

3 Data Analysis and Research Issues of Location-Based Mobile

Social Networks

The heterogeneous data in location-based social networks contain spatial-temporal-

social context and present new challenges and opportunities for data analysis. One

can ask many interesting questions that can potentially be answered by analyzing

LBSN data. For example, are there any relationships between user attitudes and

mobile patterns on LBSNs? How does geographical distance affect online social

friendship, and vice versa? Why do people use location-based social networking

services? Under what circumstances would users not like to share their locations

due to privacy issues? Can location prediction help mobile marketing? Can location-

recommender systems improve urban experience? How can one best control loca-

tion privacy to maximize her social networking experience? In this section, we in-

troduce a variety of data analysis techniques and current research on location-based

social networks, and show how answers to these challenging questions can be ob-

tained via novel data analysis to improve location-based services.

3.1 Social Friendship and Geographical Distance

Traditional social networking analysis mainly studies network structure and prop-

erties, which does not consider the geographical distance between nodes. In 2001,

Cairncross et al. [9] proposed the idea of “Death of Distance”, claiming that geo-

graphical distance begins to play a less important role due to the communication

revolution and the rapid development of the Internet, which therefore could lead

our world to a “global village”. Later, Gastner and Newman [26] studied the spa-

tial structure networks. They demonstrated that there is a strong correlation between

geographical attributes and network properties, indicating the significance of con-

sidering the spatial properties of networks for future applications. Other researchers

studied geographical distance in the Internet, and argued that the IT revolution does

not transfer us into a borderless society, as physical proximity still plays an im-

portant role in the Internet era [27, 46]. All these works are based on traditional

networks such as e-mail networks, cellphone contact networks, road networks, and

the Internet.

One of the first attempts to investigate how social connection is affected by ge-

ographical distance in online social networks was proposed in [44]. The authors
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studied users’ social networks and their hometown information obtained from Live-

Journal. Their simulation model shows that one-third of friendships are indepen-

dent of geography. With the wide use of mobile devices, such as Apple iPhones and

Google Android phones, and the increasing attention on mobile social networking,

location-based social networks focused on the small local social network derived

from a user’s geographical location become more and more popular. Dodgeball was

the first commercial location-based social network service available in the U.S.,

launched in 2000. Humphreys et al. [37] studied user behavior on Dodgeball and

found that LBSNs do change people’s attitude toward locations and their experi-

ence of urban life.

The increasing popularity of location-based social networking sites makes it pos-

sible to obtain data consisting of the geographical distance between users and their

social networks in large-scale, which in turn enables a vast research opportunity

for large-scale data analysis on geo-social properties in LBSNs. Scellato et al. [58]

proposed two geo-social metrics, embedding the geographical distance into social

structure, to measure the node locality and geographical clustering coefficient. Two

findings are presented in this work: 1) users who live close have higher probability

to create friendship links than those who live distant; and 2) users in the same so-

cial cluster show short geographical distances. Furthermore, the authors compared

location-based social networks (Brightkite and Foursquare) with content sharing-

based social networks (LiveJournal and Twitter), discovering the difference of net-

work properties between these two kinds of social networks. They found that people

within a social cluster on the LBSNs tend to have smaller geographical distance than

those online social networks focusing on content producting and sharing.

Researchers have also investigated how geographical distance influences social

networks, and how social networks influence human movement on LBSNs. Scellato

et al. [60] presented a comprehensive study on three location-based social network-

ing sites, i.e., Brightkite, Foursquare, and Gowalla. They observed strong hetero-

geneity across users with different geographic scales of interaction across social

ties, with the probability of a social tie between two users as a function of the

geographical distance between them. Cho et al. [14] studied Gowalla, Brightkite

and cell phone data, reporting that long-distance travel is more influenced by so-

cial friendship while short-range human movement is not influenced by social net-

works. More recently, Kulshrestha et al. [40] investigated the twitter social network

and concluded that offline geography still matters in online social networks, while

one third of the users would like to have their social links in other countries, which

is consistent with the previous findings presented in [44, 58]. Brown et al. [8] ex-

tended the research on LBSNs to social community, and discovered that the rise of

social groups is affected by both social and spatial factors. They reported that social

communities on location-based social networks seem to be more relevant to the spa-

tial factor. This is also consistent with previous findings [58] about the differences

between location based social networks and content sharing based social networks.
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3.2 User Activity and Mobile Pattern Analysis

Sociologists have studied the characteristics of user behavior on location-based so-

cial networks, motivated by the potential power of these characteristics for future

research and applications. Among the current research, there are two major charac-

teristics that sociologists mostly discussed, i.e., user activity and mobile patterns.

3.2.1 User Activity

User activity indicates how frequently a user creates and consumes online content in

LBSNs. Researchers attempt to classify users into various groups, representing dif-

ferent levels of user activity. This is motivated by tailoring location-based services

to different user types to benefit the majority of users. One of the first large-scale

analyses of user activity on a real-world commercial location-based social network

was presented in [42]. The authors analyzed user profiles on Brightkite, and ob-

served that the majority of users are male users, who are professionals and willing

to participate in social media. They also found that users with higher degree tend

to be more mobile and active. The authors further clustered users based on their at-

tributes such as total number of updates, uniquely visited places, etc., and obtained

five user groups according to user activity, named as inactive, normal, active, mo-

bile, and trial users. They reported that the majority of users on Brightkite are trial

users, while only 6% of users are clustered as active users. Noulas et al. [49] used a

spectral clustering algorithm to group users based on their check-in category distri-

bution on Foursquare, aiming at identifying user communities to help develop new

applications such as recommender systems.

Vasconcelos et al. [72] considered different type of features for user clustering

on Foursquare. They focused on the tips, dones and to-dos of venues, and utilized

three related attributes to cluster users, i.e, the number of tipped venues, the total

number of dones and to-dos, and the percentage of tips with links. They obtained

four groups, with three groups based on user activity level, and one group represent-

ing spam users. It is reported that around 86% of users tend to tip a larger number

of venues and get more dones and to-dos in return, forming the largest group on

Foursquare. Furthermore, the authors showed that observing a large number of links

pointed to unrelated content in tips can be a good predictor for detecting spam users.

3.2.2 Mobile Patterns

Cheng et al. [13] explored millions of check-ins on Facebook, and observed vari-

ous spatial, temporal and social patterns. For example, human movement follows a

“Lèvy Flight” [53], in which people tend to move to nearby places and occasionally

to distant places. The authors observed that user mobility is influenced by social

status, geographical and economic factors. Furthermore, the user check-in behavior

presents strong daily/weekly patterns and periodic property, indicating the poten-
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tial to improve location-based applications. In [48], the authors observed similar

geo-temporal patterns of check-ins on weekdays and weekends. They reported that

around 20% of consecutive check-ins in Foursquare happen within 1 km of one an-

other, 60% between 1 and 10 km, and 20% over 10 km. Li et al. [42] studied users’

mobility characteristics on Brightkite. They clustered users based on their mobil-

ity patterns derived from user updates and movement paths, and obtained four user

groups, namely home users, home-vacation users, home-work users, and other users

which present different mobility patterns from previous groups.

3.3 Location Prediction

Location prediction is a traditional task in mobile computing. It has been studied

over a long period. Researchers analyze human mobility patterns to improve loca-

tion prediction services, and therefore exploit their potential power on various ap-

plications such as mobile marketing [3, 4], traffic planning [6, 19], and even disaster

relief [21, 29, 22, 74]. Current research on location prediction in LBSNs mainly fo-

cuses on two tasks: 1) predicting a user’s home location; and 2) predicting a user’s

location at any time. The former task considers the static home location of a user,

while the latter considers more about a user’s moving trajectories, with his location

in movement.

Before we delve into different location prediction methods, we first discuss two

commonly used evaluation metrics in the location prediction task. The first metric

is prediction accuracy, i.e., the fraction of correctly predicted locations over the

total number of predicted locations in the testing set, which has been widely used in

current work [22, 14, 2]. Sometimes its variants have also been used for additional

evaluation. For example, the top-k accuracy is utilized in [12]. It returns the top k

candidates as the predictions for a location, and treats a prediction as correct as long

as the ground truth location is among the top k returned locations. Here, k is usually

selected as 2, 3, 5, and 10. The second metric is Expected Distance Error [14], as

shown below, which computes the average geographical distance between the real

location and the estimated location, over all predicted locations.

ErrD =
1

|L| ∑
l∈L

d(lact , lest) (1)

where L is the unknown locations in the testing set, lact is the actual location, and

lest is the estimated location. d(x,y) is a function that computes the geographical

distance between two locations x and y.

The motivation of home location prediction arises from the sparsity of available

user home locations on popular social networks such as twitter and Facebook. Based

on the statistics from [12], only 26% of twitter users list their locations as granularly

as a city name, and fewer than 0.42% of all tweets use the geo-tagging function to

indicate their locations. On the other hand, the availability of user home location
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leads to a user-centric social network. It provides an opportunity to study social

networks from a user’s ego view, and in turn benefits applications such as targeting

advertisement regions, and summarizing the local news for nearby users. Therefore,

obtaining the user home location is critical to studying human mobility on location-

based social networks.

Current work in home location prediction on LBSNs use two kinds of resources,

i.e., content information and social network information. The content-based ap-

proaches [12, 31] studied the location information implicated in a user’s tweet con-

tent, and proposed a location prediction framework based on the correlation between

specific terms in tweets and their corresponding locations.

Backstrom et al. [2] utilized social network information on Facebook to predict

the user’s home location. They predicted a Facebook user’s home address based on

the provided home addresses of his friends. One observation was leveraged that the

probability of a link being present between two nodes is a function of their geo-

graphical distance. By maximizing the likelihood of observations on friendship and

non-friendship of a user, the unknown home location could be computed according

to friends’ addresses. All these methods predict the location in country, state or city

level, while the spatial resolution is low.

To predict a user’s location at any time, usually referred to as next location predic-

tion, various approaches have been proposed in the last decade. Without the social

network information being available, these methods mainly consider the spatial tra-

jectories [47, 63], temporal patterns [68], or spatio-temporal patterns [59, 24] for lo-

cation prediction. With the availability of social information on LBSNs, researchers

start to investigate the role of social friendship in explaining a user’s mobile pat-

terns [23]. On the other hand, leveraging social networking information for location

prediction also becomes a new challenge, since how to embed the social property

into geographical patterns is a still an open issue on location based social networks.

Current work on LBSNs has proposed various approaches to combing social net-

work information with traditional spatial-temporal patterns. Chang et al. [10] uti-

lized logistic regression model to combine a set of features extracted from Facebook

data. The features include a user’s previous check-ins, user’s friends’ check-ins, de-

mographic data, distance of place to user’s usual location, etc. Their results demon-

strated that the number of previous check-ins by the user is a strong predictor, while

previous check-ins made by friends and the age of the user are also good features

for prediction.

Linear combination has been mostly used for integrating social friendship with

spatio-temporal patterns [14, 22]. Cho et al. [14] considered the user check-in proba-

bility as a linear combination of social effect and non-social effect. The social effect

assumes the check-in of a user to be close to the check-ins of his friends, both in

space and in time; while the non-social effect captures the periodical patterns, which

considers the user’s personal movement following a 2-D Gaussian distribution, with

the two Gaussian centers focusing on home and work. Gao et al. [22] proposed a

social-historical model integrating the social ties and historical ties of a user for lo-

cation prediction. Both ties generate the probability of next location based on the

observation of previous check-in sequence. The historical ties consider the user’s
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own check-in sequence, and the social ties consider the check-in sequences of the

user’s friends. Based on the observation that word sequence and location trajectory

share a set of common properties, a language model is then introduced for generat-

ing the next location probability.

All of the current work reports very limited improvement by utilizing social net-

work information in LBSNs. The model that considers social networks slightly im-

proves those that do not consider social networks. However, this does not lead to the

conclusion that social network has no contributions to a user’s mobility. The best

way to integrate the social network and leverage it for location prediction is still

under study.

3.4 Recommender Systems

Recommender systems are designed to recommend items to users in various situ-

ations such as online shopping, dating, and social events. Since the exploration of

city and neighborhood provides us with more choices of life experience than be-

fore, recommendation is indispensable to help users filter uninteresting items, and

therefore reduce their time in decision making. Furthermore, recommender systems

could also benefit virtual marketing, since the appropriate recommendations could

attract users with specific interests. Recommender systems on location-based social

networks have just started a few years ago, and three items are mainly recommended

in current work, which are locations, tags, and friends.

3.4.1 Location Recommendation

Location recommendation aims to recommend a set of locations to a user based

on the user’s interests. The major difference between location prediction and loca-

tion recommendation is that location prediction usually predicts the next location as

an existing location that the user has been before, while location recommendation

would recommend a new location that the user has never been before. From a re-

search stand point, location prediction on LBSNs considers more how to utilize the

social information, while current research in location recommendation on LBSNs

mainly focuses on the geo-spatial and temporal influence, and the social network in-

formation is usually utilized through traditional collaborative filtering [7, 81], which

considers the location as an item such as that on Epinions[64, 65]. For evaluation,

performance@N [78] is usually adopted to evaluate the location recommendation

performance. The performance@N metric consists of precision@N and recall@N.

It consider all the locations that should be recommended as uncovered locations,

and the set of correctly recommended locations as recovered locations. The preci-

sion@N evaluates the ratio of recovered locations to the N recommended locations,

and the recall@N calculates the ratio of recovered locations to uncovered locations.
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Ye et al. [77] first introduced location recommendation on location based social

networks. In this paper, the major focus is location recommendation efficiency. The

essential content contains: 1) only friendship information was used for collaborative

filtering; and 2) instead of calculating the user similarity based on historical behavior

(e.g., check-in history), the authors captured the correlations between geographical

distance and user similarity, and leveraged them for user similarity calculation. This

work is later extended in [78], which considers both spatial influence and social

friendships for location recommendation. Three factors are investigated and com-

bined together to recommend locations. The first factor represents influence from

similar users, the second factor indicates influence from friends, and the third fac-

tor captures geographical influence, under the hypothesis that people tend to visit

close places more often than distant places. A spatial constraint is generated to cap-

ture the geographical influence by exploiting the relationship between a user visiting

two places and the geographical distance of these two places. These three factors are

then represented by three probabilities, and linearly combined together with corre-

sponding weights. The results demonstrated that the most influential factor actually

comes from the similar users, while friendship and geographical distance together

have around 30% influence.

3.4.2 Tag Recommendation

Tag recommendation is motivated to enrich the semantic meaning of places and

facilitate the development of recommender systems such as “Point of Interest” re-

trieval services. Temporal patterns have been usually considered for tag recommen-

dation on location based social networks. In [75], the authors proposed “temporal

bands” to capture the temporal patterns of each place, and suggested their poten-

tial ability for tag recommendation. For example, a bar may be visited frequently

at 11:00pm to 1:00am, while a restaurant may have more visits around 12:00pm

and 6:00pm. Therefore, tags associated with the bar or restaurant present different

visiting distributions over time, i.e., temporal bands. By considering the visiting

probability on different hours of a day and different days of a week, one can com-

pare such visiting distributions between candidate tags and target places, the recom-

mender system could then recommend a set of tags that mostly fit the temporal band

of that place. In this work, the authors only proposed the idea of temporal bands, but

did not apply it to real world datasets for tag recommendation.

In [76], the temporal information has been formally utilized for tag recommenda-

tion and place annotation. In this work, the authors considered tag recommendation

as a classification problem. Two sets of features, named explicit patterns and im-

plicit patterns, are firstly defined to generate the feature space for each place, then a

SVM classifier is learned for each tag, based on the observed feature vectors that are

associated and not associated with the tag. The explicit patterns include features that

can be explicitly observed in the data, e.g., total number of check-ins, total number

of unique visitors, etc. The implicit patterns generate the relatedness between two

places based on their common visiting users and common temporal patterns, while
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the latter factor is similar to [75]. These two factors are linearly combined together

which generates a ranking list of places based on their relatedness to the target place.

A places with high relatedness is referred to as a semantic neighbor, and the corre-

sponding relatedness indicates the probability of the target place to be labeled with

a given semantic tag from this neighbor. The final implicit patterns are the probabil-

ities for each possible tag on the target place. The hypothesis of this method is that

two places checked in by the same user around the same time should have strong

relatedness, and therefore share more common tags. The experiment showed that

most people follow the same temporal patterns in visiting places, while the explicit

and implicit features both need to be considered for tag recommendation.

3.4.3 Friend Recommendation

Friend recommendation analyzes the similar patterns between a target user and other

users, and then recommends users with the most similar patterns to the target user.

Here, the similar patterns may represent the common interests, shopping habits,

traveling trajectories, etc. Friend recommendation on location-based social network

mostly use supervised learning in terms of link prediction. A set of features is firstly

extracted from the historical data for each pair of users, then a classifier is trained

based on the extracted features and finally used to predict the link between two users.

The social network information is used as ground truth to evaluate their proposed

approaches, and ROC curves [61, 55] are usually used as evaluation metrics.

Current work on friend recommendation differs in how to choose the feature

space and classifier. Jonathan et al. [10] used logistic regression to predict the link

between two users who have co-locations. Feature extraction was based on the tuples

of (place x, actor1, actor2), indicating that actor1 and actor2 have checked-in into

place x at least once. Three features are extracted: the total number of check-ins at

place x, and numbers of check-ins of actor1 and actor2 respectively. Justin et al. [17]

extracted 67 features from the data on Locaccino [54] for each co-location obser-

vation between two users. Their features include intensity and duration, location

diversity, mobility regularity, structure properties, etc., with respect to co-location

properties and user attributes. Three classifiers are selected for predicting the link,

while the results show that AdaBoost has the best classification performance. They

also reported that there is a positive correlation between the location diversity and

the number of social ties a user has in the social network, and that considering the

number of co-locations between two users is not sufficient for friend recommenda-

tion. Sadilet et al. [55] adopted the similar scenario while in addition considered the

content features from tweets. Scellato et al. [61] exploited the place features such as

common check-ins, social features like common friends, and global features such

as distance between homes, then adopted various classifiers in WEKA for link pre-

diction on Gowalla. Their results demonstrated that the purely social based features

contribute least to the prediction performance, while space features and global fea-

tures lead to better performance, indicating the importance of location-based activi-

ties on location-based social networking analysis.
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3.5 Location Privacy

Location sharing is an indispensable function of location-based social network-

ing services. Users share their locations by checking in on location-based social

networking sites to let their friends know where they are and when. The location

awareness can then form location-based social networks and enhance the user’s so-

cial connections. For example, a user may want to hang out with his friend after

learning he is nearby through his check-in status. On the other hand, while location

sharing significantly enhances user experience in social networks, it also leads to

privacy and security concerns. In recent years, location privacy on location-based

social networks has attracted more and more attention from both academia and in-

dustry. Previous work [41, 15, 30, 71] has found that privacy is a critical concern for

user considering adopting location sharing services. When using location sharing

services, some users would like to share their location with friends for social pur-

poses, while other users may believe that sharing personal location discloses one’s

personal preferences and movement track, which may cause potential physical se-

curity risks. Therefore, it is inevitable to consider privacy control when designing

location sharing applications.

Researchers are interested in understanding users’ preference regarding location

privacy in location-based social networks, such as why people are using location

sharing services and under what circumstances they do not want to share locations,

therefore improving the design of new location sharing applications. Humphreys

et al. [37] analyzed user behavior on Dodgeball by conducting interviews with 21

Dodgeball users, and discovered that location based social services do influence

the way people experience urban public places and their social relations. Lindqvist

et al. [45] explored how and why people use Foursquare through interviews and

surveys of Foursquare users, and reported five major factors that explain the reasons:

i.e., badges and fun, social connection, place discovery, keeping track of places, and

competition with themselves. Furthermore, the authors also found that the majority

of users had few privacy concerns, and users choose not to check in at specific

locations mainly because the places are embarrassing, non-interesting or sensitive.

Mobile applications have also been developed to help manage privacy on LBSNs.

Toch et al. developed a location sharing application “Locaccino”8, focusing on pri-

vacy control based on the Facebook social network [70, 54]. A Locaccino user can

request the location of his Facebook friends. It allows a user to set detailed location

sharing privacy preferences such as when and where his location can be visible to a

set of pre-specified users. Toch et al. [69] utilized the data collected from Locaccino

to investigate the location factors that influence users’ location sharing preferences.

They deployed Locaccino to a set of participants and conducted surveys on them.

Their analysis showed that locations with higher location entropy [17] (a measure

that is utilized to evaluate the user diversity of a location: higher location entropy

indicates the location has been visited by a diverse set of unique users) are more

comfortable for users to share, while highly mobile users receive more requests

8 http://locaccino.org/
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from their friends for location sharing. Cranshaw et al. [38] introduced a machine

learning approach to control the sharing policy. They proposed a Gaussian Mixture

based method to classify the privacy control policies of users, with evaluation on

Locaccino data from 43 users and 124 pre-defined privacy policies. The prediction

accuracy is chosen as the evaluation metric.

3.6 Related Efforts

Aside from the topics discussed in the previous sections, even more efforts have

been made in mining location-based social networks. In event detection, Sakaki et

al. [57] constructed an earthquake reporting system in Japan to report earthquakes

using an event detection algorithm. They considered each user who makes tweets

about a target event as a sensor of the event, and proposed a spatio-temporal model

to track the event center and trajectory. Longueville et al. [18] utilized twitter data

to analyze the spatial, temporal, and social dynamics and URL property of events

related to the Marseille forest fire, aiming to investigate the potential power of lever-

aging twitter for emergency planning and disaster relief.

In geographical topic analysis, researchers utilize generative models, which are

combined with spatio-temporal regularities to explore the space-time structures of

topical content [50], or devised with embedded content, user preference and geo-

graphical locations to model tweet density [32], or generated as a combination of

geographical clustering and topic model to discover and compare geographical top-

ics [79]. However, among all these works, social network information is not utilized

and the evaluation on the geo-topic model is also controversial to a certain extent.

In urban computing, Cranshaw et al. [16] developed an online system, Live-

hoods 9, to explore the social dynamics of the city and reveal the different character-

ized regions. The authors used a spectral clustering approach to cluster the check-in

locations from 18 million check-ins into different areas, with each one represent-

ing the character of lifestyle in that area. Sadilek et al. [56] modeled the spread of

disease through Twitter data. They proposed a detection framework to identify the

sick individual based on tweet content, and showed that there is a strong correlation

between one’s number of infected friends and his probability of getting sick, where

the probability increases exponentially as the number of infected friends grows.

4 Illustrative Examples of Mining Location-Based Social

Network Data

In this section, we present two examples to illustrate how to mine real-world LBSN

data to improve location-based services. The first example investigates a user’s

9 http://livehoods.org/
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social-historical ties in check-in behavior for location prediction, and the second

example leverages the social network information on LBSNs to address the “cold-

start” check-in problem.

4.1 Exploring Social-Historical Ties on Location-Based Social

Networks [22]

On location-based social networking sites, a user’s check-in behavior can be an-

alyzed as an integration of his social ties and historical ties, while both ties have

varying tie strengths, as illustrated in Figure 2 with the tie strengths represented by

line width.

Fig. 2 An example: How social and historical ties may affect a user’s check-ins at time T5

4.1.1 Discovering the Properties of Social-Historical Ties

The historical ties of a user’s check-in behavior have two properties in LBSNs.

Firstly, a user’s check-in history approximately follows a power-law distribution,

i.e., a user goes to a few places many times and to many places a few times. Fig-

ure 3(a) shows the distribution of check-in frequency (in log scale) on a real-world

dataset10. The figure suggests that the check-in history follows a power-law distri-

bution and the corresponding exponent is approximately 1.42. The check-in distri-

bution of an individual also shows the power-law property, as shown in Figure 3(b).

10 The dataset used in this example is available at http://www.public.asu.edu/ hgao16/dataset/SHTiesData.zip
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Secondly, historical ties have short-term effect. As illustrated in Figure 2, a user

arrives at the airport and then takes a shuttle to the hotel. After his dinner, he sips

a cup of coffee. The historical ties of the previous check-ins at the airport, shuttle

stop, hotel and restaurant have different strengths with respect to the latest check-in

at the coffee shop. Furthermore, historical tie strength decreases over time.
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(b) Power-law distribution of individual check-ins

Fig. 3 The power-law distribution of check-ins

To discover the properties of social ties, we compare the check-in similarity be-

tween users with friendship and those without. For each user, let f ∈ R
m be his

check-in vector with the k-th element f(k) being the number of check-ins at location

lk ∈ L , where m = |L | is the vocabulary size. The cosine similarity of two users ui

and u j is defined as:

sim(ui,u j) =
fi · f j

|fi|2 ×|f j|2
, (2)

where | • |2 is the 2-norm of a vector.

We define the check-in similarity between ui and a group G of other users as the

average similarity between user ui and the users in group G,

SG(ui) =
∑u j∈G sim(ui,u j)

|G|
. (3)
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For each ui, we calculate two similarities; i.e., SF(ui) is the average similarity of

ui and his friendship network; SR(ui) is the average similarity of ui and a group of

randomly chosen users, who are not in the friendship network of ui. The number of

randomly chosen users is the same as the amount of ui’s friends.

We conduct a two-sample t-test on the vectors SF and SR. The null hypothesis is

H0: SF ≤ SR, i.e., users with friendship share fewer common check-ins than those

without, and the alternative hypothesis is H1: SF > SR. In our experiment, the null

hypothesis is rejected at significant level α = 0.001 with p-value of 2.6e-6, i.e.,

users with friendship have higher check-in similarity than those without.

4.1.2 Modeling Social-Historical Ties for Location Prediction

To capture the two properties of historical ties, i.e., power-law distribution and short-

term effect, a language model is utilized to model the check-in behavior. There are

many features shared between language processing and LBSN mining. First, the

text data and check-in data have similar structures, as shown in Table 1. For exam-

ple, a document in language processing can correspond to an individual check-in

sequence in LBSNs, while a word in the sentence corresponds to a check-in loca-

tion. Second, the power-law distribution and short term effect observed in LBSNs

have also been found in natural language processing, where the word distribution

is closely approximated by power-law [83]; and the current word is more relevant

to its adjacent words than distant ones. Therefore, to model the historical ties of

a user, we introduce the Hierarchical Pitman-Yor (HPY) language model [66, 67]

to the location based social networks, which is a state-of-the-art language model

that generates a power-law distribution of word tokens [28] while considering the

short-term effect. We define the historical model (HM) as below,

Pi
H(ct = l) = Pi

HPY (ct = l|Ωi,Θ) (4)

where Pi
HPY (ct = l|Ωi,Θ) is the probability of user ui’s check-in ct at location l

generated by the HPY with ui’s observed check-in history Ωi, and Θ is the parameter

set for the HPY language model. More technical details can be found in [22].

Table 1 Corresponding features between language and LBSN modeling

Language Modeling LBSN Modeling

Corpus Check-in collection

Document Individual check-ins

Paragraph Monthly check-in sequence
Document Sentence Check-in Weekly check-in sequence
Structure Phrase Structure Daily check-in sequence

Word Check-in location

To model the social ties of check-in behavior, we define the social model (SM)

as below,



Data Analysis on Location-Based Social Networks 19

Pi
S(ct = l) = ∑

u j∈F (ui)

sim(ui,u j)P
i
HPY (ct = l|Ω j ,Θ) (5)

where F (ui) is the set of ui’s friends. Pi
HPY (ct = l|Ω j ,Θ) is the probability of ui’s

next check-in ct at location l computed by HPY with u j’s check-in history Ω j as

training data. Note that only the check-ins before the prediction time are included in

the training data.

Finally, a social-historical model (SHM) is proposed to explore a user’s check-in

behavior integrating both historical and social effects,

Pi
SH(ct = l) = ηPi

H(ct = l)+ (1−η)Pi
S(ct = l). (6)

where η controls the weight from historical ties and social ties.

The experiment results of location prediction on a real world LBSN dataset are

plotted in Figure 4, with the performance comparison of the proposed model (HM

and SHM) and four baseline models [22]. The results demonstrate that the pro-

posed approach properly captures a user’s check-in behavior by considering social-

historical ties and outperforms the current state-of-the-art prediction models.
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Fig. 4 The performance comparison of prediction models

4.2 gSCorr: Modeling Geo-Social Correlations for New Check-ins

on Location-Based Social Networks [23]

On location-based social networking sites, users explore various POIs and check

in at places that interest them. The power-law property of users’ check-in behav-

ior in Figure 3 indicates that users do visit new places, resulting in the “cold-start”

check-in problem. Predicting the “cold-start” check-in locations (i.e., predicting a
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user’s next location where he has never been before) exacerbates the already diffi-

cult problem of location prediction as there is no historical information on the user

for the new place, hence, traditional prediction models relying on the observation of

historical check-ins would fail to predict the “cold-start” check-ins. In this scenario,

social network information could be utilized to help address the “cold-start” prob-

lem since social theories (e.g., social correlation [1]) suggest that human movement

is usually affected by their social networks.

Figure 5 illustrates a user’s “new check-in” behavior in different social correla-

tion aspects. User u goes to the airport at t1, and then the restaurant at t2 followed

by the hospital at t3. When u performs a “new check-in” at t4, i.e., the check-in lo-

cation does not belong to {L1, L2, L3}, it may be correlated to those users that are

from u’s different geo-social circles SFD̄, SFD, SF̄D̄ and SF̄D, as defined in Table 2.

Investigating these four circles enables us to study a user’s check-in behavior in four

corresponding aspects: local social correlation, distant social correlation, confound-

ing, and unknown effect.
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Fig. 5 Geo-social correlations of new check-in behavior

Table 2 Geo-social correlations

F F̄

D̄ SFD̄: Local Friends SF̄D̄: Local Non-friends
D SFD: Distant Friends SF̄D: Distant Non-friends

4.2.1 Modeling Geo-Social Correlations

To model the geo-social correlations of “new check-in” behavior, we consider the

probability of a user u checking-in at a new location l at time t as Pt
u(l). We define

this probability as a combination of the four geo-social correlations,

Pt
u(l) = Φ1Pt

u(l|SF̄D̄)+Φ2Pt
u(l|SFD̄)

+Φ3Pt
u(l|SFD)+Φ4Pt

u(l|SF̄D). (7)
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where Φ1, Φ2, Φ3 and Φ4 are four distributions that govern the strength of different

geo-social correlations, Pt
u(l|Sx) indicates the probability of user u checking-in at

location l that is correlated to u’s geo-social circle Sx.

The modeling of Φ1, Φ2, Φ3 and Φ4 is based on the observation of “new check-

in” distribution in Figure 611, which indicates that Φ1 is a real-valued and differ-

entiable increasing function, and Φ2 and Φ3 are fairly constant. The percentage of

“new check-ins” from SF̄D is not presented, since it can be deduced from the other

three. Therefore,

Φ1 = f (wT ft
u + b), 0 ≤ Φ1 ≤ 1

Φ2 = (1−Φ1)φ1

Φ3 = (1−Φ1)(1−φ1)φ2

Φ4 = (1−Φ1)(1−φ1)(1−φ2), (8)
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Fig. 6 Observed social correlations on new check-ins.

where ft
u is a check-in feature vector of a single user u at time t, w is a vector of

the weights of ft
u, and b controls the bias. In this work, we define a user’s check-in

and social features ft
u in Table 3. φ2 and φ2 are two constants.

To capture the geo-social correlation probabilities Pt
u(l|Sx), three geo-social cor-

relation measures are proposed considering the factors of location frequency, user

frequency and user similarity, as described below,

• Sim-Location Frequency (S.Lf)

11 The dataset used in this example is available at http://www.public.asu.edu/ hgao16/dataset/gScorrData.zip
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Table 3 Check-in and social features

Features Description

Nc Number of check-ins in u’s history

Nnc Number of new check-ins in u’s history

NFD̄ Number of friends in SFD̄

Nc
FD̄

Number of check-ins from SFD̄

Nuc
FD̄

Number of unique check-ins from SFD̄

Nvc
FD̄

Number of visited check-ins from SFD̄

Nuvc
FD̄

Number of visited unique check-ins from SFD̄

NFD Number of friends in SFD

Nc
FD Number of check-ins from SFD

Nuc
FD Number of unique check-ins from SFD

Nvc
FD Number of visited check-ins from SFD

Nuvc
FD Number of visited unique check-ins from SFD

NF̄D̄ Number of users in SF̄D̄

Nc
F̄D̄

Number of check-ins from SF̄D̄

Nuc
F̄D̄

Number of unique check-ins from SF̄D̄

Nvc
F̄D̄

Number of visited check-ins from SF̄D̄

Nuvc
F̄D̄

Number of visited unique check-ins from SF̄D̄

Pt
u(l|Sx) =

∑v∈Sx
s(u,v)Nt

v(l)

∑v∈Sx
s(u,v)Nt

v

, (9)

where s(u,v) represents the user similarity between user u and user v. Nt
v(l) rep-

resents the number of check-ins at location l by user v before time t, and Nt
v the

total number of locations visited by user v that user u has not visited before time

t .

• Sim-User Frequency (S.Uf)

Pt
u(l|Sx) =

∑v∈Sx
δ t

v(l)s(u,v)

∑v∈Sx
s(u,v)

, (10)

where δ t
v(l) equals to 1 if user v has checked in at l before t, and 0 otherwise.

• Sim-Location Frequency & User Frequency (S.Lf.Uf)

Pt
u(l|Sx) =

∑v∈Sx
s(u,v)Nt

v(l)

∑v∈Sx
s(u,v)Nt

v

∑v∈Sx
δ t

v(l)

NSx

, (11)

We adopt S.Lf.Uf, S.Lf and S.Uf to compute Pt
u(l|SFD̄), Pt

u(l|SFD) and Pt
u(l|SF̄D̄)

respectively, based on our observation of their good performance on corresponding

geo-social circles. To reduce time complexity, we consider Pt
u(l|SF̄D) as a proba-

bility of random jump to a location in current location vocabulary that u has not

checked in before.
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4.2.2 Evaluating gSCorr

To evaluate gSCorr, we consider the effect of both geo-social correlation strength

and measures in capturing the user’s “new check-in” behavior. Therefore, we set up

five baselines to compare the location prediction performance with gSCorr, as shown

in Table 4. Each baseline adopts a different combination of correlation strength and

measures, where “Es”, “Rs”, “Vs”, “Sm”, “Vm” represent “Equal Strength” (set

all geo-social correlation strengths as 1), “Random Strength” (randomly assign the

geo-social correlation strengths), “Various Strength” (the same as gScorr), “Single

Measure” (use S.Lf.Uf to measure the correlation probabilities for all the geo-social

circles) and “Various Measures” (the same as gScorr) respectively. Note that gSCorr

is a various strength and various metrics approach. Following the evaluation metrics

of recommendation system, we use top-k accuracy as evaluation metric and set k =
1,2,3 in the experiment. For each random strength approach (RsSm and RsVm), we

run 30 times and report the average accuracy.

Table 4 Evaluation metrics

Single Measure Various Measures

Equal Strength EsSm EsVm

Random Strength RsSm RsVm

Various Strength VsSm gSCorr

Table 5 shows the detailed prediction accuracy of each method for further com-

parison. We summarize the essential observations below:

• The geo-social correlations from different geo-social circles contribute variously

to a user’s check-in behavior. Both VsSm and gSCorr perform better than their

equal strength versions (i.e., EsSm and EsSm), respectively, indicating that the

geo-social correlations are not equally weighted.

• The randomly assigned strength approaches (RsSm and RsVm) perform the

worst compared to the other approaches, where the performance of VsSm has

a 10.50% relative improvement over RsSm, and gSCorr has a 26.11% relative

improvement over RsVm, indicating that social correlation strengths do affect

check-in behavior.

• The single metric approaches (EsSm, RsSm, VsSm) always perform worse than

the various metrics approaches (EsVm, RsVm, gSCorr), which suggests that for

different social circles, there are different suitable correlation metrics.

gSCorr performs the best among all the approaches. To demonstrate the signif-

icance of its improvement over other baseline methods, we launch a random guess

approach to predict the “new check-ins”. The prediction accuracy of the random

guess is always below 0.005% for top-1 prediction, and below 0.01% for top-2 and

top-3 prediction, indicating that gSCorr significantly improves the baseline methods,

suggesting the advantage of gSCorr as considering different geo-social correlation

strength and metrics for each geo-social circle.
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Table 5 Location Prediction with Various Geo-Social Correlation Strengths and Measures

Methods Top-1 Top-2 Top-3

EsVm 17.88% 24.06% 27.86%

EsSm 16.20% 21.92% 25.43%

VsSm 16.49% 22.28% 25.92%

RsSm 14.93% 20.30% 23.70%

RsVm 15.23% 20.85% 24.50%

gSCorr 19.21% 25.19% 28.69%

5 Conclusions and Future Work

Location-based social networks carry user-driven geographical information, and

bridge the gap between real-world and online social media. Typical location-based

social networking sites contain a triple-layer data structure including geographical,

social and content information, providing an unprecedented opportunity for study-

ing mobile user behavior from a spatial, temporal and social standpoint. In this

chapter, we discuss the distinct properties of location-based social network data and

their challenges, and elaborate current work for data analysis and research issues on

location-based social networks.

This chapter has only discussed some essential issues. There are a number of

interesting directions for further exploration.

• How do we better utilize social network information on LBSNs?

Current work [22, 14, 78] on LBSNs reports very limited contributions from

social networks. In their approaches for location prediction and recommender

systems, models with social network information perform slightly better than

those without social information. This leads to the question “is social network

information really useful in explaining human mobile behavior?”. The answer

is probably still “yes”, but the consequent problem is how to appropriately and

efficiently make use of social information in LBSNs. For example, social infor-

mation could be helpful on certain specific problems, such as the “cold-start”

problem [36].

• How do we handle the check-in sparseness of LBSNs?

The sparseness of user-driven check-ins in geographical sequence in LBSNs

presents challenges to application of traditional approaches that can not handle

data sparseness. For example, in [14], the authors evaluate their location predic-

tion approaches on two location-based social network datasets and one cellphone

dataset, reporting significantly higher accuracy on cellphone data compared with

LBSN data. The sparseness of LBSNs data can be one of the reasons that explain

this phenomenon. Finding an efficient way to handle this sparse data is very chal-

lenging.

• How do we efficiently make use of user-generated content on LBSNs?

User-generated content such as comments and tips for locations reflects the inter-

est of the user within a spatial-temporal context. Current work mostly focuses on

geographical patterns and social contexts; very few attempts have been made to
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make use of the user generated content for understanding human behavior in LB-

SNs. Traditional text analysis approaches in social media could be leveraged for

mining such content. For example, semantic knowledge that are used to enrich

short texts [34, 35] can be utilized to analyze the tips on LBSNs. Furthermore,

an interesting research direction would consider the spatial-temporal, social, and

content information together for improving location-based services. Investigat-

ing such information could help design new applications more closely to a user’s

daily life, and therefore improve the urban experience of citizen life.
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