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Abstract—The increasing popularity of social media is short-
ening the distance between people. Social activities, e.g., tagging
in Flickr, bookmarking in Delicious, twittering in Twitter, etc.
are reshaping people’s social life and redefining their social
roles. People with shared interests tend to form their groups
in social media, and users within the same community likely
exhibit similar social behavior (e.g., going for the same movies,
having similar political viewpoints), which in turn reinforces
the community structure. The multiple interactions in social
activities entail that the community structures are often over-
lapping, i.e., one person is involved in several communities.
We propose a novel co-clustering framework, which takes
advantage of networking information between users and tags in
social media, to discover these overlapping communities. In our
method, users are connected via tags and tags are connected to
users. This explicit representation of users and tags is useful for
understanding group evolution by looking at who is interested
in what. The efficacy of our method is supported by empirical
evaluation in both synthetic and online social networking data.

Keywords-Community Detection; Overlapping; Social Me-
dia; Co-Clustering;

I. INTRODUCTION

The ubiquitous online social services enrich people’s
social activities with their families, friends and colleagues,
exerting a vital impact on people’s life, changing their ways
of thinking and behaving. Social media sites including Face-
book, Twitter, Wikipedia, Bloggers, Myspace are attracting
more users than ever. In 2009, the global time spent on
social media sites increased by 82%1 than the year before.
Facebook, one of the most popular social media sites, has
more than 500 million active users and the number is still
increasing2. The rapid increase in social media population
suggests a dynamic social change and potential opportunities
for social marketing businesses.

In social media websites, users are allowed to partici-
pate in social activities, e.g., connecting with other like-
minded people, updating their status, posting blogs, up-
loading photos, bookmarks and tags, and so on. Besides,
people can join explicit groups at different websites. For

∗This work was carried out when the author was at Arizona State
University.

1http://blog.nielsen.com/nielsenwire/global/led-by-facebook-twitter-
global-time-spent-on-social-media-sites-up-82-year-over-year/

2http://www.facebook.com/press/info.php?statistics

instance, fans of sports teams can join dedicated groups
where they can share their opinions on team performance,
comment on the newest information about player transfers.
Studying individual behavior is usually difficult due to the
extremely large population as well as the idiosyncrasy of
human behavior. Studying statistics at website level often
fail to catch sufficient detail. Group-level investigation can
provide useful information with varying granuality.

A group (or community) can be considered as a set of
users where each user interacts more frequently with users
within the group than with users outside the group. Some
social media websites (e.g., Flickr, Youtube) provide explicit
groups which allow users to subscribe or join them. How-
ever, some highly dynamic sites (e.g., Twitter, Delicious)
have no clear group structures, which requires quality com-
munity detection approaches to discover them. Community
detection approaches are usually based on structural features
(e.g., links). Since social media sites also provide metadata
as well as content information, such information can also
help to define the actors’ social positions.

The diversity of people’s interests and social interactions
suggests that the community structures overlap. When there
are explicit groups in social media websites, users are
allowed to join more than one group based on their personal
preferences and interests. When there are no explicit groups
available, community detection algorithms can be used to
obtain such groups. It is more reasonable to cluster users
into overlapping communities. For instance, a user who is
interested in football and iPad is very likely a member of
two separated communities.

Social media, especially in blogosphere and bookmarking
sites, provides both user information (e.g., friendship links,
profiles) and user metadata (e.g., tags). These metadata
contain clues to understanding communities in social me-
dia. Clustering homogeneous users and semantically close
tags into communities simultaneously is a challenging but
rewarding task. It is easy to obtain the common interests
of a community by aggregating tags within it. This is
helpful to study communities. Co-clustering is one way
to obtain this kind of community structures. However, the
constructed communities are disjoint which contradicts the
actual social structures. Figure 1 is a toy example of two
communities. Vertices u1 − u5 on the left represent users,
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Figure 1. A 2-community toy example

t1 − t4 on the right represent tags and edges represent tag
subscription relation between users and tags. According to
Dhillon’s [1] and Zha’s [2] approaches, the singular vector
corresponding to second largest singular value gives the
bipartition information of the bipartite graph which is shown
as follows:
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If a clustering algorithm such as k-means is run on the
singular vector, user u3 will be assigned to either one of the
two clusters if we want a bipartition. This disjoint clustering
fails to uncover the real social roles of user u3. Based on
the graph structure, it is more reasonable to have two over-
lapping clusters (u1, u2, u3, t1, t2) and (u3, u4, u5, t3, t4), in
which the users’ interests of each cluster can be summarized
using t1, t2, and t3, t4, respectively.

An interesting observation in social life is that a social
connection is often associated with one affiliation [3]. For
instance, a person likes or dislikes a movie, he/she is or is
not a member of special interest group, and so on. Instead of
clustering vertices, clustering edges seems more appropriate
in a sense. Clustering edges usually achieves overlapping
communities. Look at the toy example shown in Figure 1,
edges connecting to nodes t1, t2 and t3, t4 are clustered into
two separate groups both containing user u3. The difference
between our work and traditional co-clustering of documents
and words [1], [2] is that we allow cluster overlap. It
is also different from fuzzy (soft) clustering because we
assign discrete cluster membership. Thus our contributions
are summarized as follows:

• We propose to discover overlapping communities in
social media. Diverse interests and interactions that
human beings can have in online social life suggest that
one person often belongs more than one community.

• We use user-tag subscription information instead of
user-user links. In social media, people can easily con-
nect to thousands of like-minded users. Therefore, these
links become less informative for community detection.
Metadata such as tags become an important source
in measuring the user-user similarity. We show that
more accurate community structures can be obtained
by scrutinizing tag information.

• We obtain clusters containing users and tags simulta-
neously. The clusters explicitly show who is interested
in what, which is helpful in understanding the groups.
Existing co-clustering methods cluster users/tags sep-
arately. Thus, it is not clear which user cluster corre-
sponds to which tag cluster. But our proposed method
is able to find out user/tag group structure and their
correspondence.

The rest of this paper is organized as follows. Section II
summarizes contemporary techniques in community detec-
tion and co-clustering. Section III defines the problem for-
mally. A framework is presented in Section IV, followed by
experimental evaluation in Section V and VI. Our work and
possible future directions are summarized in Section VII.

II. RELATED WORK

Online social networks are recognized as complex net-
works which are characterized by high clustering coefficient
and short average distance [4]. A high clustering coefficient
suggests a strong community structure in social networks.
But community structure is not always explicitly available
which makes community detection [22] an important com-
ponent in social network analysis.

Most work in community detection attempt to discover
non-overlapping communities based on different measures,
objectives and statistical inference [5]. Methods based on
graph partitioning is used to divide users into disjoint sub-
graphs such that the number of edges lying between different
communities are minimized. However, the graph partition
problem is usually NP-hard which is relaxed to spectral
clustering [6]. Newman and Girvan [7] proposed modularity
to measure the strength of community structure. Modularity
of a community is defined by the number of edges within
the community subtracted by the expected number of edges
in this community. High modularity implies that the nodes
are closely connected. Maximizing the modularity is also
proven to be NP-hard and a relaxation to spectral clustering
is proposed [8]. Random walk can be effective in community
detection in social and biological networks [9], [10]. The
basic idea is that the random walker has a higher likelihood
to stay within the highly connected communities than move
to another community.

Online social networks are made of highly overlapping
cohesive communities. Overlapping community detection,
which allows one user to be associated in several com-
munities, attracts more attention recently. There are two



different versions of overlapping community representation.
Fuzzy clustering or soft clustering is one of the ways in
which each node will be assigned a membership score to
a community. The probability represents the membership
dedicated to a community. Yu et al. [11] propose a graph
factorization framework, which approximates the original
graph by constructing a node-community bipartite graph,
in which each link between a node and a community
represents the membership (probability) of this node to the
community. Bayes inference, usually requires some observed
patterns of connections between users, and builds a statistical
model with a set of parameters, then these parameters are
estimated by maximizing posterior [5]. Newman et al. [12]
model the probabilities from users to groups via expectation-
maximization in directed graphs.

The other way of overlapping community detection is
discrete assignment. CFinder [13] first enumerates all k-
cliques and combines them if there is a high overlapping
(e.g., they share k-1 nodes) between two cliques. Cliques are
fully connected sub-graphs and a node may belong to several
cliques. This method can discover overlapping communities,
but it is computationally expensive. EdgeCluster [3] views
the graph in an edge-centric angle, i.e., edges are treated as
instances and nodes are treated as features. It also shows
that a user is usually involved in multiple affiliations, but
an edge is usually only related to a specific group. Thus,
they propose to cluster edges instead of nodes in social
media. This discrete assignment of nodes in a graph gives
a clear definition on the community of nodes. Evans et
al. [14] proposes to partition links of a line graph to uncover
the overlapping community structure. A line graph can be
constructed from the original graph, i.e., each vertex in the
line graph corresponds to an edge in the original graph and
the links in the line graph represents the adjacency between
two edges in the original graph, for instance, two vertices in
line graph are connected if the corresponding edges in the
original graph share a vertex. But it is difficult to scale up
to large data sets because of memory requirement.

Co-Clustering is the process to cluster instances as well
as their features at the same time. Dhillon et al. [1] propose
to co-cluster documents and terms. At first, a bipartite
graph between documents and terms is constructed, but
partitioning documents and words in this graph is NP-hard,
thus it is relaxed to a spectral co-clustering problem. Then
top singular vectors (except the principle singular vector) of
the document-word bipartite graph are clustered by k-means
algorithm. The work above does not take the document-
document correlation into account. Java et al. [15] advance
this method by adding link structures between entities. For
example, links between academic papers in terms of citation
are added to the paper-word bipartite graph. The basic idea
of Zha et al. [2] is close to Dhillon’s work. The bipartite
graph partition problem is solved by computing a partial
singular vector decomposition (SVD) of the weight matrix.

Furthermore, Zha et al. also show that the normalized cut
problem is connected to correspondence analysis in multi-
variate analysis. Similar to [1], this problem is also relaxed to
spectral clustering, then k-means is run on the eigenvectors
to discover clusters. Compared to [1], this method requires
more memory and are computationally more expensive.
Information-theoretic co-clustering [16] tries to maximize
mutual information between document clusters and term
clusters.

III. PROBLEM STATEMENT

In social media, a community is a group of people who are
more “similar” with people within the group than people out-
side this group. Homophily is one of the important reasons
that people connect with others [17], which can be observed
everywhere: people who come from the same city talk more
frequently, people have similar political viewpoints are more
likely to vote for the same candidates, and people who watch
the same movies because of the commonly liked movie stars.
The homophily effect suggests that like-minded people have
a higher likelihood to be together.

In social media websites such as BlogCatalog3 and
del.icio.us4, users are allowed to register certain resources
(e.g., bookmarks, blogs). For each resource, users are asked
to provide a short description in terms of tags. These tags
are not randomly picked. They summarize the main topic
of each resource. In this paper, the concept of community
is generalized to include both users and tags. Tags of a
community imply the major concern of people within it.

Let U = (u1, u2, . . . , um) denote the user set, T =
(t1, t2, . . . , tn) the tag set. A community Ci(1 ≤ i ≤ k)
is a subset of users and tags, where k is the number of
communities. As mentioned above, communities usually
overlap, i.e., Ci

⋂
Cj �= ∅ (1 ≤ i, j ≤ k). On the other

hand, users and their subscribed tags form a user-tag matrix
M, in which each entry Mij ∈ {0, 1} indicates whether user
ui subscribes to tag tj . So it is reasonable to view a user as
a sparse vector of tags, and each tag as a sparse vector of
users.

Given notations above, the overlapping co-clustering
problem can be stated formally as follows:

Input:

• A user-tag subscription matrix MNu×Nt ,
where Nu and Nt are the numbers of users
and tags, respectively;

• The number of communities k.

Output:

• k overlapping communities which consist
of both users and tags.

3http://www.blogcatalog.com/
4http://delicious.com/



IV. THE CO-CLUSTERING FRAMEWORK

The observation that a user is usually involved in several
affiliations but a link is usually related to one community en-
lightens us to cluster edges instead of nodes. After obtaining
edge clusters, communities can be recovered by replacing
each edge with its two vertices, i.e., a node is involved
in a community as long as any of its connection is in the
community. Then the obtained communities are often highly
overlapped. This idea is similar to cluster in line graphs [14],
but constructing line graph requires large amount of memory.

In a user-tag network, each edge is associated with a user
vertex ui and a tag vertex tp. If we take an edge-centric
view by treating each edge as an instance, and two vertices
as features, each edge is a sparse vector. The length of vector
is Nu+Nt, in which the first Nu entries correspond to users,
and the other Nt entries correspond to tags. For example,
the edge between u1 and t1 in Figure 1 can be represented
as (1, 0, 0, 0, 0, 1, 0, 0, 0), in which only entries for vertices
u1 and t1 are non-zero.

Communities that aggregate similar users and tags to-
gether can be detected by maximizing intra-cluster similar-
ity, which is shown in Eq. (2).

argmax
C

1

k

k∑
i=1

∑
xj∈Ci

Sc(xj , ci) (2)

where k is the number of communities, C = {C1, C2,
. . ., Ck}, xj represents an edge, and ci is the centroid of
community Ci. This formulation can be solved by using
k-means. However, k-means is not efficient for large scale
data sets. We propose to use EdgeCluster which is a k-means
variant and is a scalable algorithm to extract communities
for sparse social networks [3]. It treats the network in an
edge-centric view. It is efficient because each centroid only
compares to a small set of edges that are correlated to the
centroid. It is reported to be able to cluster a sparse network
with more than 1 million nodes into thousands of clusters
in tens of minutes. The clustering quality is comparable to
modularity maximization but the time and space reduction
is significant. It should be noted that the network in [3] is
1-mode, but the user-tag network is 2-mode.

The expected density of the user-tag network is shown in
Eq. (3), which guarantees an efficient solution by applying
EdgeCluster (The proof is omitted due to space limitation).

density ≈ γ − 1

2− γ
· (d2−γ − 1) · 1

Nu
(3)

where d is the maximum tag degree, Nu is the number of
users in this graph and γ is the exponent of the power law
distribution, which usually falls between 2 and 3 in social
networks [20]. The maximum degree d is usually large in a
power law distribution. Thus, the density is approximately
inverse to the number of users.

A key step in clustering edges is to define edge similarity
(centroids can be viewed as edges as well). Given two edges
e(ui, tp) and e′(uj, tq) in a user-tag graph, the similarity
between them can be defined in Eq. (4):

Se(e, e
′) = αSu(ui, uj) + (1− α)St(tp, tq) (4)

where Su(ui, uj) is the similarity between two users, and
St(tp, tq) is the similarity between two tags. This is rea-
sonable because the edge similarity should be dependent on
both user and tag similarity. And parameter α (0 ≤ α ≤
1) controls the weights of users and tags. Considering the
balance between user similarity and tag similarity, α is set
to 0.5 in our experiments.

In the following sections, we show that our framework
can cover different similarity schemes.

A. Independent Learning

Independence assumption is a popular way to simplify
the problem we want to solve. If two tags are different,
their similarity can be defined as 0, and 1 if they are the
same. Thus the similarity can be represented by an indicator
function which can be shown by Eq. (5).

δ(m,n) =

{
1 m = n
0 m �= n

(5)

The user-user similarity is also defined in a similar way.
Cosine similarity is widely used in measuring the simi-
larity between two vectors. Given two edges e(ui, tp) and
e′(uj , tq), their cosine similarity can be rewritten in Eq. (6).

Se(e, e
′) =

1

2
(δ(ui, uj) + δ(tp, tq)) (6)

Following Eq. (4), we can define the similarity between
two edges as in Eq. (6), which is essentially the cosine
similarity between two edges.

B. Normalized Learning

In online social networks, the tag usage behavior differs
one user to another. For example the tag usage distribution
follows a power law: some tags are shared by a small group
of people, which might suggest a higher likelihood that they
form a community. On the other hand, popular tags may not
be discriminative in inferring group structures. Thus there is
a need to differentiate the importance of different users and
tags.

Let dui denote the degree of the user ui, and dtp rep-
resent the degree of tag tp in a user-tag network. After
applying normalization, edge e(ui, tp) can be represented
by (0, . . . , 0, 1

dui
, 0, . . . , 0, 1

dtp
, 0, . . . , 0). Given two edges

e(ui, tp) and e(uj , tq), the cosine similarity after normal-
ization between them can be written in Eq. (7).

Se(e, e
′) =

dtpdtqδ(ui, uj) + duidujδ(tp, tq)√
d2ui

+ d2tp

√
d2uj

+ d2tq

(7)



Setting α to 0.5, Su(ui, uj) and St(tp, tq) given by
Eq. (8), we can derive Eq. (7) from Eq. (4). Thus normalized
edge similarity is consistent with the proposed framework.

Su(ui, uj) =
2dtpdtqδ(ui, uj)√

d2ui
+ d2tp

√
d2uj

+ d2tq

St(tp, tq) =
2duiduj δ(tp, tq)√

d2ui
+ d2tp

√
d2uj

+ d2tq

(8)

It is noticed that the similarity between two users is not
only related to users, but also the tags they are associated
with. Eq. (6) and Eq. (7) both assume tags (users) are
independent, which is not true in real applications. We next
propose a similarity measurement based on correlation.

C. Correlational Learning

Users often use more than one tag to describe the main
topic of a bookmark. Grouped tags indicate their correla-
tion. For instance, the tags car information, auto info and
online cars info, are used to describe a blog5 registered on
BlogCatalog, are different, but semantically close.

In a user-tag network, a user can be viewed as a vector by
treating tags as features. On the other hand, a tag can also be
viewed as a vector by treating users as features. Representing
users in a latent semantic space captures the correlation
between tags, for example, mapping several semantically
close tags to a common latent dimension. Let t̃1, t̃2, . . . , t̃m
be the orthogonal basis of a latent semantic sub-space for
tags, user vectors in the original space can be mapped to
new vectors in the latent space, which is shown in Eq. 9.

ũi(t̃1, t̃2, . . . , t̃m) = M(ui(t1, t2, . . . , tn)) (9)

where M is a linear mapping from the original space to
the latent sub-space. Singular Value Decomposition (SVD)
is one of the ways to obtain the set of orthogonal basis. The
singular value decomposition of user-tag network M is given
by M = UΣV T , where columns of U and V are the left and
right singular vectors and Σ is the diagonal matrix whose
elements are singular values. User vectors in the latent space
can be formulated in Eq. (10).

ui(t1, t2, . . . , tn) = {UΣ}iV T

⇔ ui(t1, t2, . . . , tn) = ũi(t̃1, t̃2, . . . , t̃m)V T

⇔ ũi(t̃1, t̃2, . . . , t̃m) = ui(t1, t2, . . . , tn)V (10)

where ui(t1, t2, . . . , tn) and ũi(t̃1, t̃2, . . . , t̃m) are the user
vectors in the original and latent space, respectively.

However, only a small set of right singular vectors V ′ =
(v2, v3, . . . , vm) are necessary to be computed. Dhillon [1]
suggests that it be �log2 k�+1. Recent experimental evalu-
ation in text corpus suggests the dimension between 50 and

5http://www.blogcatalog.com/blogs/online-cars-info-auto-info-car-
news.html

1,000 depending on the corpus size and the problem being
studied [18]. Another reason of taking a relatively small m
is to reduce noise in the data. The user vectors in the latent
space can be represented by pluging V ′ into Eq. (10). We
set m to 10 for synthetic data sets and to 300 for social
media data sets. The user similarity and tag similarity are
then defined by the corresponding vectors in the latent space.

Su(ui, uj) =
ũi · ũj

‖ũi| ‖ũj‖
St(ti, tj) =

t̃i · t̃j
‖t̃i| ‖t̃j‖

(11)

This can be interpreted from the graph partition point of
view. Graph partition based on ratio-cut or normalized-cut
can be relaxed to spectral clustering problem [6].

Lz = λWz (12)

where z solves the generalized eigenvectors of above equa-
tion, L is the laplacian matrix and W is the adjacency matrix,
their definitions are shown in Eq. (13) in which D1 and D2

are diagonal matrix whose non-zero entries are user degrees
and tag degrees, respectively.

L =

[
D1 −M

−MT D2

]

W =

[
0 M

MT 0

]
(13)

Let Z =

[
U
V

]
denote the eigenvectors of Eq. (12). The

generalized eigenvector problem can be rewritten by:
[

D1 −M
−MT D2

] [
U
V

]
= λ

[
D1 0
0 D2

] [
U
V

]
(14)

After simple algebraic manipulation, we obtain

M = (1− λ)V TD1U

MT = (1− λ)UTD2V (15)

Thus eigenvectorsZ are actually the right and left singular
vectors of adjacency matrix M . Thus top singular vectors
(except the principle singular vector) of the adjacency matri-
ces contain partition information [1], [2], [6]. Since the user-
tag graph studied in this paper is connected, the principle
singular vector is discarded.

V. SYNTHETIC DATA AND FINDINGS

Clustering evaluation is difficult when there is no ground
truth. Synthetic data, which is controlled by various param-
eters, facilitates a comparative study between the uncovered
and actual clusters. We first introduce the synthetic data and
how they are generated, then the clustering quality measure-
ment Normalized Mutual Information (NMI). Finally, the
NMI of different clustering methods are reported.



u7

t8

u2

t1

u1

t2

t7

u5u6

t5

t6

u4

t3

u3

t4

Figure 2. A (toy) synthetic graph with three clusters

A. Synthetic Data Generation

We develop a synthetic data generator that allows input of
the numbers of clusters, users and tags. First users and tags
are split evenly into each cluster. Then, in each cluster users
and tags are randomly connected with a specified density
(e.g., 0.8). Links between clusters which account for 1%
of the total number of links are randomly assigned to two
users or two tags belonging to distinct clusters. For such
between cluster links, additional user nodes or tag nodes
are added such that users are connected to tags and tags are
connected to users. Figure 2, shows a toy example of the
synthetic user-tag graph in which users are labeled as u1−u7
and tags t1− t8. Three overlapping clusters are highlighted
with different colors. Nodes labeled as t7, t8 and u7 are
shared by two of the clusters. As shown in the toy example,
links within clusters are dense, and links between clusters are
sparse, thus the link structure implies a separation of clusters
which will be served as an approximate ground truth.

B. NMI Evaluation in Synthetic Data

The advantage of a synthetic study is that the ground
truth is under control. Thus, it is possible to measure the
clustering performance by comparing with the ground truth.
The Normalized Mutual Information (NMI) is commonly
used to measure the clustering quality. Since we are studying
overlapping clustering, the NMI definition given by Lanci-
chinetti et al. [19] will be used in the following evaluations.
It is an extension of NMI for non-overlapping clustering.
Given two clusterings X and Y, the NMI is defined below.

NMI(X,Y ) = 1− 1

2
(H(X|Y )norm +H(Y |X)norm)

H(X|Y )norm =
1

|CX |
∑
k

minl∈{1,2,...,|CY |} H(Xk|Yl)

H(Xk)

H(Y |X)norm =
1

|CY |
∑
k

minl∈{1,2,...,|CX |} H(Yk|Xl)

H(Yk)
(16)

where H(X |Y ) and H(Y |X) are conditional entropy,
|CX | and |CY | are the number of clusters in X and Y,
respectively. The NMI is computed in two steps. First, find
the pairs of clusters that are most close to each other in two
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Figure 3. NMI Performance w.r.t Number of Clusters

clusterings. Second, average the mutual information between
those pairs of clusters. The higher the NMI value is, the more
similar between two clusterings. If two clusterings X and Y
are exactly the same, the NMI value is 1.

C. NMI and Number of Clusters

We generate another data set with 1,000 users and 1,000
tags and with different number of clusters which range
from 5 to 50 and cluster density is set to 1 such that all
users connect to all tags within each cluster. The latent
dimension m is set to 20 in the synthetic evaluations. Since
our proposed algorithms are basically k-means variants, we
run our methods 100 times and report the averaged NMI. In
each run, we set the same seed for Independent Learning,
Normalized Learning and Correlational Learning. Dhillon’s
co-clustering method is also included for the comparative
study. The results are summarized in Figure 3.

We can see that the method considering tag correlation
performs much better than the other two. This indicates that
correlation helps to aggregate users and tags that are se-
mantically close. It is interesting to note that the Normalized
Learning is inferior to the counterpart without normalization.
Co-clustering fails to uncover overlapping structure, and has
a similar performance as that of Independent Learning.

D. NMI and Link Density

We also study how intra-cluster link density affects clus-
tering in synthetic data sets. We created synthetic data sets
(50 clusters, 1,000 users and 1,000 tags) with different intra-
cluster densities that range from 0.1 to 1. The data set is
sparse when the link density is low and users and tags are
fully connected when the link density is 1. The NMI results
for different methods are shown in Figure 4. When the
intra-cluster link density is greater than or equal to 0.2, the
averaged NMI for correlational learning is above 0.8 which
suggests the overlapping structures are well recovered. A
high NMI value suggests the robustness of the proposed
framework to work well even when the intra-cluster link
density is low. Interestingly, co-clustering does not work
well when the link density is low, e.g., NMI values are below
0.3 when the intra-cluster density is smaller than 0.5.
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Figure 4. NMI Performance w.r.t Intra-cluster Link Density

In summary, Correlational Learning is more effective than
the other two methods in recovering overlapping clusters in
terms of NMI. It works well even when the intra-cluster link
density is low. Co-clustering performs poorly because it only
finds non-overlapping clusters.

VI. SOCIAL MEDIA DATA AND FINDINGS

BlogCatalog is a social blog directory where the blog-
gers can register their blogs under predefined categories.
We crawled user names, user ids, their friends, blogs, the
associated tags and blog categories. For each blog, users are
allowed to specify several tags as a short description. These
tags are usually correlated with each other. We crawled more
than 10,000 users. Users who have no tags are removed from
the data set, and tags that were used by less than two persons
were removed as well. Finally, we obtained a data set with
8,797 users and 7,418 tags.

Delicious is a social bookmarking website, which allows
users to tag, manage, and share online resources (e.g.,
articles). For each resource, users are asked to provide
several tags to summarize its main topic. We crawled 11,285
users whose information include user name, user id, their
friends and fans, their subscribed resources and tags for each
resource. The top 10 most frequent tags of each person are
kept, which is 13,592 in total. In contrast to BlogCatalog,
two kinds of links are formed in Delicious. Fans are the
connections from other people (in-links) and friends are the
links point to others (out-links). Thus, the connections are
directional in Delicious.

The statistics of both data sets are summarized in Table I.
The most important difference between the two data sets
is that BlogCatalog has category information which can be
served as a ground truth for clustering distribution.

A. Interplay between Link Connection and Tag Sharing

There exist explicit and implicit relations between users.
Examples of explicit relations are friends or fans people
choose to be. Examples of implicit relations are tag sharing,
i.e., people who use the same tags. Are there any correlation
between the two different relations? What drives people
connect to others? Is it a random operation? We conducted
statistical analysis between user-user links and tag sharing.

Table I
STATISTICS OF BLOGCATALOG AND DELICIOUS

BlogCatalog Delicious
# of users 8,797 11,285

# of unique tags 7,418 13,592
# of links 69,045 112,850
density 1.1 ×10−3 7.3 ×10−4

maximum tag usage 165 10
minimum tag usage 1 10
average tag usage 7.8 10

In the first study, we fix users who have or have no
connection with others, then show the tag sharing prob-
abilities. Figure 5 shows the tag sharing probabilities in
BlogCatalog and Delicious data sets. For Delicious data, the
friends network and fans network are evaluated separately.
All three graphs show a similar pattern that the tag sharing
probability is higher among users who are connected than
users who are not. This can be explained by the homophily
principle that people tend to connect with those who are
like-minded.

Figures 6 and 7 are the probability that two users being
connected if they share tags in BlogCatalog and Delicious,
respectively. In Figure 6, the probability of a link between
two users increases with respect to the number of tags
they share. In Delicious, similar pattern is observed. It is
also intriguing to show the probability that two users are
connected is higher in fans network than that in friends
network, which implies users are more similar to their fans
than their friends.

B. Clustering Evaluation

The clustering evaluation consists of three studies. First,
cross-validation is performed to demonstrate the effective-
ness of different clustering algorithms in BlogCatalog data
set. Then we study the correlation between user connec-
tivity and co-occurrence in extracted communities. Finally,
concrete examples illustrate what clusters are about.

1) Comparative Study: In BlogCatalog, categories for
each blog are selected by the blog owner from a predefined
list. A category is treated as a community or group which
suggests the common interest of people within the group.
For example, category “Blog Resources” is related to the
gadgets used to manage blogs or to communicate with other
social media sites. Around 90% of bloggers had joined two
categories, and few bloggers had more than 4 categories.

With category information, certain procedures such as
cross validation (e.g., treating categories as class labels,
cluster memberships as features) can be used to show
the clustering quality. Linear SVM [21] is adopted in our
experiments since it scales well to large data sets. As
recommended by Tang et al. [3], 1,000 communities are used
in our experiments. We vary the fraction of training data
from 10% to 90% and use the rest as test data. The training
data are randomly selected. This experiment is repeated for
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Figure 5. X-axis represents the number of tags that two users share. Y-axis in log plot is the probability that two users share tags. Left graph shows
the tag sharing probability in BlogCatalog data set by fixing the users we want to study. Center and Right graphs are the corresponding probabilities in
Delicious data set. Center graph is summarized in friends network and Right graph is in fans network. The red curves represent the probability that users
are connected, and the blue curves represent there are no links between these users.
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Figure 6. Link probability w.r.t tag sharing in BlogCatalog

10 times and the average Micro-F1 and Macro-F1 measures
are reported.

Table II shows five different clustering methods and their
prediction performance. In this table, the fourth algorithm
EdgeCluster [3] uses user-user network rather than the user-
tag network. Dhillon’s co-clustering algorithm is based on
Singular Value Decomposition (SVD) of the normalized
user-tag matrix. As shown in Table II, Correlational Learning
consistently performs better, especially when the training
set is small. According to Table II, normalization does not
improve performance. This suggests normalization should be
taken cautiously. Dhillon’s co-clustering method which can
only deal with non-overlapping clustering does not perform
well compared to other methods.

It is also interesting to notice that clustering based on user-
tag is significantly better than user-user connection which
suggests that meta data (e.g., tags) rather than connection is
more accurate in measuring the homophily between users.
The clustering difference between meta data and links also
reveals promising applications of the framework in link
prediction systems. Next, we try to interpret clustering
results.

2) Connectivity Study: We study the correlation between
user co-occurrence in extracted communities and the ac-
tual social connections between them. We also study the
connectivity between users who are in the top similar list.
1,000 overlapping communities are extracted by Correla-
tional Learning.

In Table III, first row represents the number of commu-
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Figure 7. Link probability w.r.t tag sharing in Delicious
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Figure 8. Probability being Dis-connected between Top Similar Users

nities two users co-occur, and each entry in this table is the
probability that two users have a connection established in
actual social networks. The last column lists the probability
if two users are connected randomly. Higher probability
than randomness suggests that users within communities are
similar to each other. As observed in Table III, frequent
co-occurrence of users in different communities implies
that they are more likely to be connected. Therefore, it
is reasonable to state that higher co-occurrence frequency
suggests that two users are more similar. Similar patterns
are observed in the other two methods.

We compute pairwise cosine similarity between users
(in the latent space) and sort them in descending order,
then study the dis-connectivity between users who are
most similar. Figure 8 shows that the probability of being
disconnected is higher than 96% and 99% in BlogCatalog
and Delicious, respectively, which means that the majority



Table II
CROSS VALIDATION PERFORMANCE IN BLOGCATALOG DATA SET

Proportion of Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

Correlational Learning 38.45 37.75 40.53 38.84 41.92 41.30 43.77 43.15 44.88
Independent Learning 33.96 36.15 35.07 34.72 35.36 37.32 42.12 41.83 43.09

Micro-F1(%) Normalized Learning 23.89 28.10 29.22 32.14 34.52 35.19 35.79 35.74 37.62
EdgeCluster(user-user) 24.85 25.55 26.27 25.18 25.28 24.80 24.11 23.94 22.22
Co-clustering 23.18 24.18 24.11 24.30 24.34 24.23 24.18 24.15 23.97

Correlational Learning 28.85 26.83 27.68 28.52 28.18 29.69 28.60 30.16 29.96
Independent Learning 23.84 25.32 24.34 23.81 25.06 26.28 29.05 27.27 26.84

Macro-F1(%) Normalized Learning 14.76 17.61 16.85 18.78 21.66 21.80 22.07 22.39 24.20
EdgeCluster(user-user) 14.24 15.16 16.43 15.75 15.96 16.08 15.42 15.78 14.99
Co-clustering 4.95 5.06 5.11 5.19 5.07 5.18 5.17 5.23 4.66

Table III
CO-OCCURRENCE VS. CONNECTIVITY

# of Co-occurrence 1 2 3 4 5 Random
BlogCatalog(×10−2 ) 1.64 2.78 4.27 4.43 4.48 0.74
Delicious(×10−3 ) 2.52 3.83 3.94 3.97 3.45 0.35

of homogeneous users are not connected in actual social
networks. For example, users marama6 and ameer1577 both
are interested in the online game “World of Warcraft”. Their
tags highly overlap, but there is no connection between them.
In online social networks, most users are scattered in the
long tail, and are usually unreachable by following their and
their friends’ links. But it is possible to recommend links to
connect them with our Correlational Learning.

3) Illustrative Examples: Health is the second largest
category (the largest is personal) in BlogCatalog, a hot topic
that attracts lots of cares. To visualize communities, we
create tag clouds using Wordle8. In a tag cloud, size of a tag
is representative of its frequency or importance in a set of
tags or phrases. Figure 9 shows the tag cloud for Category
Health (category-health) including all tags of this category.
The most frequent 5 tags, health, weight loss, diet, fitness
and nutrition, are all about health.

The largest cluster about Health obtained by Correlational
Learning is cluster-health with 127 users and 102 tags. The
cluster that has the maximum user overlapping with cluster-
health is cluster-nutrition with 83 users and 25 tags. Their
tag clouds are shown in Figures 10 and 11. Between the two
clusters, there are 18 users and 3 tags health, nutrition and
weight loss in common. Both clusters are related to health
but the first has an emphasis on physical health, highlighted
by tags arthritis, drugs, food, dentist, and the second is
more about nutrition. We study the tag overlapping between
category-health and cluster-health, and between category-
health and cluster-nutrition. The top 102 tags of category-
health are compared to the tags of cluster-health and the top
25 tags of category-health to those of cluster-nutrition. The
numbers of shared tags are 16 for cluster-health and 9 for

6http://www.blogcatalog.com/user/marama
7http://www.blogcatalog.com/user/ameer157
8http://www.wordle.net/

Figure 9. Tag cloud for category-health in BlogCatalog

Figure 10. Tag cloud for cluster-health in BlogCatalog

cluster-nutrition. The overlapping analysis indicates that tags
of the two clusters differ (with only 3 tags in common), the
tags of the two clusters are not the same as those of category-
health, and each cluster represents a new concept (or a sub-
topic of health) that is buried in the tags of category-health.

In addition, we aggregate tags of the users in cluster-
health and present the most frequent 102 tags in Figure 12.
Comparing these tags with those of cluster-health, 40 tags
are in common. Many tags such as environment, humor,
jokes are not present in the tag cloud of cluster-health,
which suggests that these users actually have other interests
besides health. A similar pattern is observed for cluster-
nutrition. The proposed approach clusters users and tags
simultaneously can find clusters with more semantically
similar tags.

VII. CONCLUSIONS AND FUTURE WORK

Multiple interests and diverse interactions a person has
in his real social life suggests that community structures in
social media are often overlapping in nature. Rich metadata
available in online social media provides new opportunity
to discover communities by the content users produce. We



Figure 11. Tag cloud for cluster-nutrition in BlogCatalog

Figure 12. Tag cloud for users from cluster-health

proposed a framework to study the overlapping clustering
of users and tags in online social media which helps to un-
derstand the major concerns within the groups. Experimental
results in synthetic data reveal that Correlational Learning is
very effective in recovering the overlapping cluster structures
even when the inner cluster density is low. We reported
several interesting findings in BlogCatalog and Delicious
data sets. For instance, learning from the metadata is more
accurate than the link information, people are more similar
to their fans, and so on.

This study suggests more interesting problems that are
worth further exploring. Formulating the co-clustering prob-
lem into an objective function and maximizing it is one
direction to work on. With the large scale online social
media data, the computational cost poses a serious challenge,
which suggests that we develop more scalable algorithms to
efficiently obtain co-clusters. Link prediction is another line
of research in which the Correlational Learning framework
can help.
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