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ABSTRACT

The rapid growth of location-based social networks (LBSNs) invig-
orates an increasing number of LBSN users, providing an unprece-
dented opportunity to study human mobile behavior from spatial,
temporal, and social aspects. Among these aspects, temporal ef-
fects offer an essential contextual cue for inferring a user’s move-
ment. Strong temporal cyclic patterns have been observed in user
movement in LBSNs with their correlated spatial and social effects
(i.e., temporal correlations). It is a propitious time to model these
temporal effects (patterns and correlations) on a user’s mobile be-
havior. In this paper, we present the first comprehensive study
of temporal effects on LBSNs. We propose a general framework
to exploit and model temporal cyclic patterns and their relation-
ships with spatial and social data. The experimental results on two
real-world LBSN datasets validate the power of temporal effects in
capturing user mobile behavior, and demonstrate the ability of our
framework to select the most effective location prediction algorithm
under various combinations of prediction models.
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1. INTRODUCTION

The wide use of mobile devices has greatly enriched users’ urban
experience and promoted the development of location-based social
services in recent years. Typical location-based social network-
ing sites (e.g., Foursquare' and Facebook Places?) have attracted
billions of users around the world and generated massive location-
based social network data, providing us with both opportunities and

"http://foursquare.com/
’http://www.facebook.com/about/location/
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Figure 1: The Information Layout of LBSNs

challenges for investigating a user’s mobile behavior, with the pur-
pose of designing more advanced location-based services such as
location-based marketing [9] and disaster relief [3].
Location-based social network data contain three distinct infor-
mation layers: a social layer, a geographical layer, and a temporal
layer, as shown in Figure 1. The social layer consists of social
friendships, the geographical layer displays historical check-ins of
users, and the temporal layer indicates temporal stamps of each
check-in action. The availability of multiple information sources
presents various views to study a user’s mobile behavior from spatio-
temporal, social-temporal, socio-spatial, and spatial-temporal-social
aspects. Previous research studied the social and spatial layers on
LBSNs in terms of social-historical ties [4], social-spatial prop-
erties [10], geographical influence [14], and “geo-social” correla-
tions [5], etc., while the temporal layer in terms of temporal effects
has been rarely studied to model user mobile behavior on LBSNs.
In this paper, we aim to present a comprehensive study of tem-
poral effects on LBSNs to model user mobile behavior. The tem-
poral layer on LBSNs is usually leveraged as an order indicator to
connect check-ins chronologically for generating location trajecto-
ries [15], which has not been fully exploited. As observed in [13,
8], human movement exhibits strong temporal cyclic patterns in
terms of hour of the day and day of the week. For example, a user
regularly goes to a restaurant for lunch around 12:00 pm, watches a
movie on Friday night, and shops during weekends. Previous work
has leveraged these patterns as features under supervised learning
to solve location prediction problem [1]. Since human movement
is observed as a stochastic process [7], the temporal features gen-
erated from a user’s movement become very sparse in the large
temporal feature space, while the unobserved features severely af-
fect the prediction performance. Due to the temporal continuity of
human movement, it is possible to infer an unobserved temporal



feature with observed temporal patterns. For example, a tempo-
ral pattern of visiting a restaurant at 10:00 am and 12:00 pm could
imply the user’s potential presence at that restaurant at 11:00 a m,
although such presence at 11:00 am is unobserved in the user’s pre-
vious movement. This inspires us to exploit these temporal cyclic
patterns for modeling a user’s temporal preferences.

In addition, temporal cyclic patterns strongly correlate to the
spatial and social layers. Firstly, they imply the chronological in-
formation for generating location trajectories, which form a user’s
spatial context [6]. Secondly, social correlation suggests that hu-
man movement is usually affected by their social context, such as
having lunch with friends at noon. Therefore, to model the tempo-
ral effects on LBSNs, we inevitably need to consider two aspects:
(1) temporal preferences in terms of cyclic patterns; and (2) tem-
poral correlations in terms of temporal-spatial correlations and
temporal-social correlations.

In this paper, we model temporal effects of user mobile behav-
ior on location-based social networks in terms of the above two
aspects. To the best of our knowledge, this work presents the first
comprehensive study of temporal effects on LBSNs. The contribu-
tions of our work are the following:

e We propose a general framework to study temporal effects in
terms of temporal preferences and temporal correlations on
location-based social networks.

e We model the temporal cyclic patterns to capture a user’s
mobile behavior through check-in data, and investigate their
correlations to the spatial context and social context.

e We use location prediction to evaluate the temporal effects on
two real-world location-based social network datasets. The
results validate the power of temporal effects on a user’s mo-
bile behavior.

2. AFRAMEWORKFOR MODELING USER

MOBILE BEHAVIOR

To investigate the temporal effects, we first propose a general
framework to model a user’s mobile behavior w.r.t. the temporal
cyclic patterns and temporal correlations. Let U = {uy, uy, ..., u,}
be the set of users and £ = {l,,[,,...,1,} be the set of locations
where n and m are the numbers of users and locations, respec-
tively. Each check-in action is represented as a tuple (u;, [;, ) € C,
indicating user u; € U checks in at location [; € L at time #,
where C is the observed check-in set. Let ¥ (u) denote u’s so-
cial friends, H,, = {(u;, lj, t)ui, lj, ) € C, u; = u, t < t} be
the observed historical check-in actions of u before time ¢, and
Su,, = {(u,-,lj,tk)l(ui,lj,lk) € C, u; € F(u), t, < t} be the ob-
served check-in actions of u’s friends before time 7. #; and ¢ are all
represented by standard time format “YYYY-MM-DD hh:mm:ss
am/pm”, e.g., “2013-02-22 11:09:59 pm”.

Figure 2 shows a user u#’s mobile behavior (represented by “?”)
at time ¢ w.r.t. his/her personal check-in history H,, and friends’
check-in history S ,,,. Given the corresponding observations of H,,
and S, the probability distribution over the check-in locations of
u at time ¢ is governed by the following formula:

P(c, = lll, Hu,/,Su,/), (1)

where ¢, denotes the check-in location of user u. Various tempo-
ral information related to cyclic patterns can be implied by ¢ (e.g.,
“2013-02-22 11:09:59 pm”) to indicate a user’s check-in state, such
as a specific hour of the day (11:00 pm), a day of the week (Fri-
day), or a month of the year (February), etc. We use temporal
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Figure 2: Mobile Behavior of User u at Time ¢

state to represent such information and introduce r(f) to denote
the temporal state extracted from the time ¢. Depending on the
type of temporal state, r(¢) can be a different function. For exam-
ple, if r(f) denotes temporal state in terms of hour of the day, then
r(?) € {0,1,...,23}, with r(f) = 2 indicating that the temporal state
is 2 am. If r(r) denotes temporal state in terms of day of the week,
then r(¢) € {0,1,...,6}, with (f) = 2 indicating that the temporal
state is Wednesday. Without loss of generality, we use 7(¢) to de-
note a type of temporal state in the following description. Eq.(1) is
then reformulated as

P(Cu = llr(l), Hu,l, Su,l)- (2)
Applying Bayes’ rule, we reformulate Eq. (2) and obtain

Pey = lr(0), Hyg, S ui)
o P(r(t)lcu = l7 Hu,t’ Su,t)P(cu = llHu,t’ Su,t)' (3)

The above equation decomposes a user’s check-in probability
into two components w.r.t. spatial and temporal context, with each
context associated with the observed H,, and S ;. P(c, = l|H .1, S us)
is the spatial context indicating the location distribution of u’s
check-in given his/her personal check-in history and friends’ check-
in history. P(r(t)lc, = I, H,,,S.,) is the temporal context repre-
senting the temporal state distribution of u’s check-in, given the
observed check-in location at / with the corresponding H,,, and S ,, ;.

Various approaches have been proposed to model the spatial con-
text P(c, = l|H,,, S .,). Since the check-in temporal state r(¢) is not
observed in spatial context, the chronological information of H,,
and S, is commonly utilized to generate location trajectories. For
example, the Order-k Markov Model [11] considers only H,, and
generates the probability based on the most frequent location se-
quential patterns. The Social-Historical Model [4] considers both
H,,and S ,, and generates the probability based on the combination
of their weighted location sequential patterns.

Compared to the spatial context, the temporal context has been
little exploited in previous research. It builds the nexus between a
user’s visited location and the corresponding visiting time, and pro-
vides context of how likely a user would visit a location at a specific
temporal state according to his/her personal preferences and so-
cial networks. In this paper, we model it as a probability function
w.r.t. the combinational effect of personal preferences from H,,
and social influence from S, ,. Following the common assumption
of modeling user behavior in online social media [12], we consider
the personal preferences and social influence of a user as two inde-



pendent parts and adopt a combinational approach similar to [4]:

P(r(Dlcy =1, Hyr, S uyr)
=aP®lc, =L H,)+ (A —a)Pr@)lc, =1,S.,)
=aP@r®lc, =1,H,,)

Dierw Sim(u, u)P(r(t)lc, = I, Hy; )

Zu,-ET(u) Sim(us Mi)

+(1-a) . C))
where « is a parameter that controls the contribution of personal
preferences and social influence. sim(u,u;) is the similarity be-
tween u and ;. In this paper, we compute it as cosine similarity
based on the visited locations of u and u;.

According to Eq.(3) and Eq.(4), we obtain the framework of
modeling temporal effects of user mobile behavior:

P(c, = lIr(2), Hu,/, Su,t)
o< P(cy = l|Hyy, S u)(@PrDle, = 1, Hyy)
Zu;eT(u) Sim(bl, Mi)P(r(t)|Cu = l’ Hu,-,/)

+(1 -
( @ Zuieﬂu) sim(u, u;)

) (&)

In the above framework, P(r(?)lc, = [, H,,) plays an important
role as an elemental distribution. It captures a user u’s temporal
preferences, and generates the social context P(r(f)lc, = 1, S ,,) by
incorporating social friend u;’s temporal preferences P(r(t)|c, =
[,H, ). The temporal preferences and social context are corre-
lated through Eq.(4) forming a user’s temporal context, which is
correlated to the spatial context through Eq.(5). These temporal
preferences and correlations form the temporal effects on LBSNs,
resulting in three major aspects that we study in this paper:

e Temporal Preferences
P(r()lc, = I, H,,) represents the effects of temporal prefer-
ences. It captures the temporal state distribution of a user’s
check-in at a location based on the observation of his/her his-
torical check-ins.

Temporal-Social Correlations

Eq.(4) presents the temporal-social correlations between a
user and his/her friends. It fuses the personal check-in pref-
erences from a user and his/her social friends, providing the
perspective of investigating how likely a user’s temporal check-
in preferences would be affected by his/her social friends.

Temporal-Spatial Correlations

Eq.(5) combines a user’s temporal context P(r(t)lc, = I, H,.;, S us)

and spatial context P(c, = [|H,,, S .,) together, correspond-
ing to the correlations between temporal cyclic information
and chronological information. It provides a mathematical
analysis on how likely a user would visit a location w.r.t.
his/her recently visited locations and visiting time.

3. MODELING TEMPORAL EFFECTS ON
LOCATION-BASED SOCIAL NETWORKS

In the above section, we have modeled a user’s mobile behavior

and presented the importance of the temporal distributions P(r(¢)|c,(t) =

l,H,,) in capturing a user’s temporal preferences and connecting
spatial and social contexts. In this section, we discuss how to model
this distribution P(r(t)|c,(t) = I, H,,). We first analyze two differ-
ent types of temporal cyclic patterns from a user’s check-in history,
followed by the modeling of these patterns and then discuss how to
integrate them together.

3.1 Analyzing Temporal Cyclic Patterns

Previous work has discovered that human mobility exhibits strong
temporal cyclic patterns, and suggested that daily patterns (hour of
the day) and weekly patterns (day of the week) are the two most
fundamental patterns in reflecting a user’s mobile behavior [13, 8].
It is also reported as a mobile property that a user mostly visits a
location during one or more specific periods of time, while rarely
visiting it during other time periods [6]. Figure 3 plots a user’s daily
and weekly check-in distribution at a location / from our dataset.
Each point in Figure 3(a) and Figure 3(b) represents the total num-
ber of check-ins that occurred at a specific hour of the day (day of
the week) at location / by that user, respectively. We can observe
the phenomenon of “check-in probability centering on certain time
periods and decreasing during other time periods” from this figure,
which is consistent with the above property.
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Figure 3: Daily and Weekly Check-in Distribution of a User at
Location /

To model the temporal preferences P(r(?)lc, = I, H,,), e.g., how
likely the user would visit location / at 16:00 pm, one can sim-
ply count the number of a user’s previous check-ins at location /
at 16:00 pm, and compute its ratio to the total number of his/her
check-ins at location / through Figure 3. However, users usually do
not have check-ins at each hour of the day (day of the week) on a
location. For example, there are no check-ins from hour 0 to hour
2 in Figure 3(a). It would be arbitrary to determine that the proba-
bility of his/her check-in during that time is zero, as the visit time
of a user at the same location tends to be within a user-biased time
period. Therefore, a smoothing technique is inevitable to evaluate
the probability of a check-in at unvisited time.

3.2 Modeling Temporal Cyclic Patterns

Mathematically, we need a probability distribution to model a
user’s temporal preferences at a location P(r(t) = qlc, = L, H,,).
Such distribution should satisfy the following requirements: (1)
probability distribution centers on one or more temporal states; (2)
probability decreases as the distance to the center point increases;
and (3) each user has a biased probability decreasing speed around
a center. Among various distributions, Gaussian mixture distribu-
tion is such a distribution capturing these properties. Thus, in this
paper, we utilize the Gaussian mixture model (GMM) to capture a
user’s temporal preferences. The hypothesis is that a user u’s vis-
iting time at a location [ is a stochastic process centered around
several time points, as shown below:

k
P(r(Dlc, =1, Hyy) ~ ZAI'N (r®l, o) (0)
i=1
where k is the number of centers considered to model P(r(¢)|c,
=1,H,,). A; controls the maximum power of Gaussian distribution
centered on the i-th center. :“54,1 and 0’54,1 are the corresponding mean
and variance.
Each user may have different temporal preferences on different
locations, resulting in different numbers of centers in the above



distribution. To determine the value of k, we design a center de-
tection strategy to compute the number of possible centers in the
temporal state distribution on each observed user-location pair. A
temporal state is considered as a center as long as the check-in fre-
quency on this temporal state is higher than that of the previously
observed temporal state and the next observed temporal state. For
a user-location pair with less than three observed temporal states,
we consider it a single center case whose center corresponds to the
temporal state with the highest check-in frequency.

We applied the center detection strategy to our dataset, and ob-
served that more than 90% of daily and weekly patterns have less
than two centers, indicating that k = 2 represents the majority. In
addition, due to the data sparseness, the daily pattern has a maxi-
mum of 24 input points for training, while the weekly pattern has 7
points at most, which is insufficient to accurately model a compli-
cated process with too many center points. Therefore, in this paper,
we select the number of centers k as two for modeling temporal
preferences and take the gradient descent method to solve Eq. (6).

3.3 Integrating Temporal Cyclic Patterns

In previous sections, we modeled daily and weekly patterns of a
user’s mobile behavior with Gaussian mixture distribution. In this
section, we discuss how to integrate the two temporal cyclic pat-
terns together. We first formally define r(¢) in terms of daily and
weekly temporal states. We define r(¢) = {ry(¢), r,,(t)} as two indi-
cator functions mapping the time stamp for each type of time state,
where r,(f) € {0, 1,....23} is the hour of the day (e.g., 10:00 am),
indicating the daily temporal state. r,,(¢) € {0, 1, ..., 6} is the day of
the week (e.g., Monday), indicating the weekly temporal state. As-
sume the time stamp ¢ = “2012-11-24 12:30:00pm”, then r,(r)=12
(12:00 pm) and r,,(f)=5 (Saturday). We follow the independence
assumption [6] of daily and weekly patterns and obtain

P(r(l)lcu = l, Hu,r)
= P(Vd(l), rw(l)lcu = 17 Hu,t)
= P(ra@lcy = 1, Hy )P(ro(Ole, =1, Hy,), @)

where P(r,(t)lc, = [, H,,) indicates the probability of the check-
in happening at hour r,(f) given the observation that the check-in
actually occurred at location /. Similarly, P(r,,(¢)|c, = [, H,,) indi-
cates the probability of the check-in happening at day r,(f) given
the observation that the check-in actually occurred at location /.

4. EXPERIMENTS

In this section, we evaluate the significance of temporal effects
with our proposed models under the general framework on two
real-world location-based social network datasets. We use loca-
tion prediction as an application for evaluation. Since we focus
on investigating the temporal effects of user mobile behavior, we
perform the evaluation in two stages: (1) we evaluate the models
based on temporal preferences, temporal-social correlations, and
temporal-spatial correlations, respectively, to see their ability in
improving location prediction performance; and (2) we compare
the selected location prediction models from our framework with a
state-of-the-art location prediction method, which utilizes spatial,
temporal and social information in order to give a general idea of
the effectiveness and reasonableness of our framework.

4.1 Datasets and Experiment Setup

We use two publicly available datasets from two location-based
social networking sites, i.e., Foursquare3 and Brightkite“, to evalu-

Shttp://www.public.asu.edu/~hgaol6/dataset.html
“http://snap.stanford.edu/data/loc-brightkite.html

Table 1: Statistical Information of Two Datasets
Brightkite Foursquare
Duration 03/2008-10/2010 | 03/2010-01/2011
# of Users 26,915 18,107
# of Check-ins 4,666,732 2,073,740
# of Unique Locations 751,176 43,063
# of Links 261,982 231,148
# of Test Check-ins 134,575 90, 935

ate the temporal effects of user mobile behavior. Both sites allow
a user to check-in at a physical location through his/her cellphone
and then let his/her online friends know where he/she is. In both
datasets, the friendships are undirected.

We select users who have at least 10 check-ins, and obtain 26,915
and 18,107 users on each dataset. For each user, we randomly sam-
ple five of his/her total check-ins as test check-ins. The statistic
information of these two datasets is listed in Table 1. For each
test check-in from a user u, we consider its check-in time ¢, the
user’s historical check-ins before f (H,,), and the check-ins from
u’s friends before 7 (S ) as observed data. We then predict the test
check-in location based on models of temporal preferences, tem-
poral social-correlations, and temporal-spatial correlations, respec-
tively. We use prediction accuracy, i.e., the ratio of the number of
accurately predicted check-ins to the total number of test check-ins,
to evaluate the prediction performance.

For the temporal preference model, we use GMM to compute
the temporal state probability P(r(#)lc, = [, H,,), as discussed in
Section 4. We rank all the locations observed in H,, based on their
P(r(t)lc, = 1, H,,) with respect to the temporal state of test check-
in time ¢ and report the top ranked location for prediction. For the
temporal-social correlation model, we first apply GMM to com-
pute P(r(t)lc, = I, H,,,) for each user u’s friend u; and then obtain
the P(r(#)lc, = 1, S ,.,) and P(r(t)lc, = I, Hy,, S ;) through Eq.(4) for
location prediction. Finally, for the temporal-spatial correlation
model, we compute the check-in probability P(c, = I|r(?), H,, S us)
through Eq.(5) with the temporal-social correlation model and
existing spatial models.

4.2 Temporal Preferences

In this section, we evaluate the effectiveness of temporal pref-
erences in terms of (1) whether applying smooth technology can
capture a user’s temporal preferences more accurately; and (2) how
do different temporal cyclic patterns affect a user’s temporal pref-
erences. Table 2 shows the detailed prediction performance, where
“Daily” and “Weekly” indicate the type of patterns used in Eq. (7).
“Daily_Weekly” represents the combination of the two patterns
through Eq.(7). The non-smooth approaches simply consider the
ratio of a user’s previous check-ins on / at r(¢):

P(r(t)|cu = l, Hu,t)
{Cui, Ly ti)Kui, Ly 1) € Hyygy = 1 r(8) = r(0)}]

= 8
{Cui, L, 6w, L, 1) € Hyyy Ly = 1) ®)

We summarize the essential observations from Table 2:

e Approaches with GMM based on Gaussian smooth all per-
form better than non-smooth approaches, demonstrating the
property of “check-in probability centering on certain time
periods and decreasing during other time periods”, which
explains a user’s mobile behavior to a certain extent.

e The non-smooth approaches obtain much better performance

compared to the random guess approach (approximately 3.84 %

and 4.49% accuracy) on two datasets. This proves that users



Table 2: Location Prediction with Temporal Preferences

Patterns Brightkite | Foursquare
Daily 0.2221 0.1526
Non-Smooth Weekly 0.2156 0.1345
Daily_Weekly | 0.2485 0.1875
Daily 0.2949 0.2084
GMM Weekly 0.2721 0.1729
Daily_Weekly | 0.3360 0.2614

on LBSNs do exhibit temporal cyclic patterns, and such pat-
terns are helpful in capturing a user’s temporal preferences.

e The daily pattern and weekly pattern both capture a user’s
temporal preferences. Their integration outperforms each in-
dividual one, indicating that these two patterns contain com-
plementary information to explain a user’s mobile behavior.

In sum, both daily and weekly cyclic patterns observed from a
user’s check-in history can be utilized for improving location pre-
diction performance. By exploiting their relationship to the unob-
served cyclic patterns through smoothing, we are able to capture
a user’s mobile behavior more accurately. In addition, the com-
bination of daily and weekly patterns can better explain a user’s
temporal preferences than each pattern.

4.3 Temporal-Social Correlations

In this section, we investigate the effectiveness of temporal-social
correlations. We are interested in how a user’s mobile behavior on
a location is affected by his/her temporal preferences and his/her
friends’ temporal preferences. According to the temporal-social
correlation model in Eq.(4), « is a parameter to control the con-
tribution of personal preferences and social influence. Therefore,
to investigate the temporal-social correlations, we consider three
variants of the model:

e Soc: Setting @ = 0, Soc considers friends’ temporal prefer-
ences only, corresponding to P(r(t)lc, = 1, S ).

o Tmp: Setting @ = 1, Tmp considers personal temporal pref-
erences only, corresponding to P(r(f)|c, = [, H,,).

e Tmp-Soc: Increasing a from 0 to 1 with an increment step of
0.01, observing the location prediction performance at each
a. Tmp-Soc reports the best performance, corresponding to
considering both personal preferences and social influence.

The results are reported in Table 3. Due to the space limit, we only
present the results on Brightkite, as similar results are observed on
Foursquare. We summarize the essential observations below:

e Soc performs better than the random guess approach. It achieves,

on average, 94.97% relative improvement over the ran-
dom guess approach, suggesting that a user’s temporal pref-
erences do have correlations to his/her friends.

o Tmp-Soc performs slightly better than Tmp. According to
social correlation, similar users tend to become friends and
social friends tend to behave similarly, suggesting that two
friends may share more common preferences. This explains
the small improvement which may be due to the overlapping
of temporal preferences between a user and his/her friends.

o The best performance in Tmp-Soc is obtained with  around
0.8, indicating the different contributions of personal prefer-
ences and social networks on a user’s mobile behavior, which
is also consistent with the observations in [4].

Table 3: Location Prediction with Temp-Social Correlations

Pattern Soc Tmp | Tmp-Soc
Daily 0.0761 | 0.2949 | 0.2982
Brightkite Weekly 0.0751 | 0.2721 0.2724
Daily_Weekly | 0.0734 | 0.3360 | 0.3389

4.4 Temporal-Spatial Correlations

In this section, we investigate the effectiveness of temporal-spatial
correlations in Eq. (5), which also corresponds to our framework.
We first present a set of state-of-the-art approaches for modeling
spatial context P(c, = Il|H,,,S .,) and then evaluate the temporal-
spatial correlations model.

4.4.1 Spatial Models

We introduce three state-of-the-art spatial models, which utilize
location trajectory patterns for location prediction.

e Most Frequent Check-in Model (MFC)
The Most Frequent Check-in Model assigns the probability
of a user u checking in at a location / as the probability of
[ appearing in u’s check-in history; social information is not
considered in this approach.

e Order-1 Markov Model (OMM)
The Order-1 Markov Model [11] considers the latest check-
in location as context and searches for frequent patterns to
predict the next location. Social information is usually not
considered in this model.

e Social Historical Model (SHM)

The Social Historical Model [4] utilizes the Hierarchical Pitman-

Yor language model to capture the n-gram location sequen-
tial patterns for location prediction w.r.t. a user’s social and
historical ties.

4.4.2  Performance of Temporal-Spatial Correlations

Table 4 lists the location prediction performance with various
spatial-temporal correlations. Each cell represents the prediction
accuracy with the correlated models from the corresponding row
and column, where “Temporal Only” indicates that no spatial con-
text is used in Eq. (5), corresponding to the temporal-social correla-
tion model Tmp-Soc in Table 3. “Spatial Only” indicates no tem-
poral context is used, corresponding to the above spatial models.
The percentage listed next to the accuracy represents the relative
improvement over the corresponding spatial model. We summa-
rize several observations below:

e The temporal-spatial correlation models consistently outper-
form the corresponding spatial only models. For example,
the proposed temporal-spatial correlation models have, on
average, 8.26%, 3.70%, and 4.25% relative improvement over
MFC, OMM, and SHM, respectively, on Brightkite. Simi-
lar improvements can also be observed on Foursquare data.
Considering the low accuracy of random guess approach on
two datasets, this improvement is actually significant. The
results also indicate that temporal cyclic patterns provide com-
plementary information to spatial context and are helpful in
improving the prediction accuracy.

o The spatial only models perform better than the proposed
temporal only models, indicating the importance of chrono-
logical information in explaining a user’s mobile behavior.
The results suggest that cyclic information may not be as
valuable as chronological information to model a user’s mo-
bile behavior, while the latter contains more helpful informa-
tion to improve the location prediction accuracy.



Table 4: Location Prediction with Temporal-Spatial Correlations

Temporal Only MEFC OMM SHM

Spatial Only - 0.3377 0.3244 0.3950
Brightkite Daily 0.2982 0.3651 (+8.11%) | 0.3374 (+4.01%) | 0.4127 (+4.48%)
Weekly 0.2724 0.3411 (+1.01%) | 0.3309 (+2.00%) | 0.3962 (+0.30%)
Daily_Weekly 0.3389 0.3906 (+15.66%) | 0.3409 (+5.09%) | 0.4265 (+7.97%)

Spatial Only - 0.2706 0.2498 0.3120
Foursquare Daily 0.2123 0.2888 (+6.73%) | 0.2591 (+3.72%) | 0.3276 (+5.00%)
Weekly 0.1781 0.2810 (+3.84%) | 0.2535 (+1.48%) | 0.3213 (+2.98%)
Daily_Weekly 0.2646 0.3140 (+16.04%) | 0.2601 (+4.12%) | 0.3423 (+9.71%)

Table 5: Comparison of SHM+T and PSMM

SHM+D | SHM+W | SHM+DW | PSMM
Brightkite 0.4127 0.3962 0.4265 0.3874
Foursquare | 0.3276 0.3213 0.3423 0.3127

e The performance of the combined model is highly related
to the prediction ability of each individual model. For ex-
ample, a strong-strong combination (e.g., Daily_Weekly and
SHM) performs better than a strong-weak combination (e.g.,
Daily_Weekly and OMM), while the latter is better than a
weak-weak combination (e.g., Weekly and OMM). This pro-
vides an opportunity to select the most effective prediction
algorithm from various model combinations by evaluating
their performance through our framework.

4.4.3 Comparison to State-of-the-Art Prediction Model

To summarize, our framework provides a way to evaluate tem-
poral effects on various location prediction models. The empirical
comparison indicates that SHM, considering temporal information
(denoted as SHM+T), performs the best. Since SHM+T takes into
account temporal, spatial and social information, we would like to
further investigate how it fares in comparison with the state-of-
the-art location prediction approach which also considers tempo-
ral, spatial and social information.

PSMM [2] is a state-of-the-art location prediction method in
LBSNs that leverages spatial, temporal and social information for
location prediction. It also utilizes Gaussian distribution; how-
ever, different from our work, it models spatial patterns instead of
temporal patterns as Gaussian distribution. We compare SHM+T
with PSMM on our two datasets and the results are shown in Ta-
ble 5, where D (daily) and W (weekly) denote the type of tem-
poral information considered. The experiment results show that
SHM+T performs consistently better that PSMM. According to
the different types of cyclic patterns used in SHM+T, it achieves
6.30% and 5.66% relative improvement, on average, over PSMM
on Brightkite and Foursquare, respectively. This indicates that the
prediction models selected from our framework could be very ef-
fective in capturing a user’s mobile behavior.

5. CONCLUSION AND FUTURE WORK

In this paper, we model the temporal effects of user mobile be-
havior on LBSNs with respect to two aspects: temporal preferences
and temporal correlations. We study each aspect under a proposed
framework which not only models these aspects together but also
provides the ability to select the most effective location prediction
algorithm. Our experimental results show that a user’s mobile be-
havior is affected by various temporal cyclic patterns whose dis-
tribution can be modeled as a Gaussian mixture distribution and
therefore captures a user’s temporal preferences more accurately.
We also observe that a user’s temporal preferences are correlated
with his social friends with a lot of preference overlapping, and
conclude that temporal context is complementary to spatial con-
text in improving location prediction performance. Among various

directions for future work, it would be interesting to consider con-
tinuous temporal states for modeling cyclic patterns and explore
other types of temporal cyclic patterns.
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