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ABSTRACT
As the largest professional network, LinkedIn hosts millions of user
profiles and job postings. Users effectively find what they need by
entering search queries. However, finding what they are looking
for can be a challenge, especially if they are unfamiliar with specific
keywords from their industry. Query Suggestion is a popular fea-
ture where a search engine can suggest alternate, related queries. At
LinkedIn, we have productionized a deep learning Seq2Seq model
to transform an input query into several alternatives. This model is
trained by examining search history directly typed by users. Once
online, we can determine whether or not users clicked on suggested
queries. This new feedback data indicates which suggestions caught
the user’s attention. In this work, we propose training a model with
both the search history and user feedback datasets. We examine
several ways to incorporate feedback without any architectural
change, including adding a novel pairwise ranking loss term during
training. The proposed new training technique produces the best
combined score out of several alternatives in offline metrics. De-
ployed in the LinkedIn search engine, it significantly outperforms
the control model with respect to key business metrics.
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1 INTRODUCTION
Searching within a site like LinkedIn is different than a general
web search. The domain is professional communication, including
finding jobs, people, or industry news. Industry veterans will have
more knowledge of key terms and phrases that will lead them to
produce better searches with better results. Novice job seekers may
not know the right terminology to find what they want. This is
where query suggestion comes in [4, 8].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3412714

Table 1: Examples of query reformulation data. Users first
typed in the first query, reformulated it to the second query,
and then clicked a document.

.

First query Second query (document clicked)

ai ai engineer
relevance ai
patent law ip law
charles smith chuck smith
charles smith mo charles smith missouri

With query suggestion, we can provide the user with potentially
related searches. We can offer suggestions that could guide them to
make the most of the search experience. State of the art approaches
typically begin with by treating query suggestion as a machine
translation problem, and solve it with sequence to sequence mod-
eling [7, 18]. Within this framework, one can also add in previous
search history and other member personal features.

The primary source of training data for this task is search
logs [11]. We denote this as reformulation data, with examples in
Table 1. Search logs are mined for instances where a user made an
initial unsuccessful search, changed their search slightly, and then
performed a successful search soon afterwards. Success is defined
by whether a user performed any additional action on the search
results, i.e. interacting with a profile or job listing. This can be com-
bined with other heuristics, such as requiring words in common
between the query pairs, or requiring a minimum number of users
to also have searched for the same pairs. Once the model is trained
and deployed online, we can see which queries were chosen, if any.
We denote this data as user feedback data (Table 2). The focus of
this paper is in using both of these sources of data.

The query reformulation data is valuable as it provides human
generated examples of real queries that were rewritten and turned
into successful searches. For example, a user may have searched for
“relevance programmer", and found few job postings, then searched
for "ai engineer" and clicked on a result. In other words, we learn
as the users learn. User feedback data, on the other hand, can tell
us whether a suggested query catches the user’s attention. For
example, “ethical ai" and “500k ai engineer" are more interesting or
glamorous than “ai engineer intern".

One may be tempted to use only the feedback data to train the
query reformulation model. However, this poses two drawbacks.
Firstly, the feedback data is machine generated. We are limited to
the suggestions provided by whichever machine learning model is
deployed during the data collection period. Secondly, the ability to
attract the user’s eyemay lead to ’clickbait’ searches. In our example
above, the second option (“500k ai engineer") may not return results,
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Table 2: Examples of user feedback data. For the query
"patent law", 6 related queries were suggested by the related
search model. The user clicked on the "intellectual property
law".

Query Suggestion Clicked

patent law patent lawyer 0
intellectual property law 1
ip law 0
patent counsel 0
patent attorney 0
patent legal 0

mechanical designer mechanical engineer 0
solidworks 0
mechanical design engineer 1
mechanical drafter 0
industrial designer 0
junior mechanical designer 0

or results of low quality. This motivates us to combine the two
sources of data and produce a model that provides both useful and
attractive suggestions.

We can treat the clicked query pairs from the feedback data as
additional machine translation data. However, this misses a key
observation: user feedback is a different kind of data. The users
did not type them in from scratch; instead, they simply selected
them from a list. This is not the same as knowing gold standard
suggestions. Instead of inserting them into the training data, a
more principled approach would be to give this dataset an entirely
different interpretation: clicked versus unclicked labels in our data
induce a basic ranking on the suggestions. The clicked suggestion
is the better one, and it should receive a higher likelihood score
than the others so that it "ranks" higher.

Using this intuition, we build a model training procedure that
simultaneously trains with the reformulation data with the standard
log-likelihood loss, and adds a penalty term for the user feedback
data to guide the model into ranking clicked suggestions higher
than non-clicked ones. We test this method against several simpler
methods: (1) using only reformulation data, (2) using only clicked
pairs, (3) model fine-tuning on clicked pairs, and (4) combining the
reformulation and clicked pairs into a single dataset.

The advantages of our method are as follows:

• It is a straightforward and powerful way to incorporate both
human generated examples and feedback data in sequence
to sequence modeling. In many web applications, both data
types are available, thus there are many possible applications
of this work.

• This method naturally provides a way to insert "negative
examples" (i.e. poor-quality suggestions) to train a robust
model.

• This method is easy to deploy in production, since it only
modifies the training procedure. In online serving, the model
latency and the online infrastructure are unchanged relative
to the baseline.

• Finally, this is orthogonal to approaches that explicitly in-
corporate query history [12]; this does not change the un-
derlying architecture of the seq2seq model, only the training
procedure, and can theoretically be combined with any se-
quence to sequence model.

2 RELATEDWORK
Query suggestion with machine translation [16], and specifically
sequence to sequence modeling, has been successfully deployed in
industry [9]. The neural machine translation approach is highly
customizable and can easily incorporate many more features, such
as search session data [7, 18].

Click Feedback Aware Networks for query suggestion [12] use
feedback data in providing high quality query suggestions. CFAN
is a ranking model for a separate generation pipeline. Using query
session information, it builds a hierarchical, siamese network. Our
model, on the other hand, acts directly on the sequence to sequence
framework. It does generation and ranking in the same model.

Within machine translation, the subproblem of domain adap-
tation focuses on the of use two separate datasets: an in-domain
corpus, and a larger out-of-domain corpus, with the goal of produc-
ing a functioning domain-specific MT system. We highlight two
main approaches. The first approach is to combine the in-domain
and out-of-domain data into a single corpus [6]. Since the out-of-
domain corpus is larger, the machine translation system will be
biased towards it. Typically, biases manifest as the system prefer-
ring interpretations from the out-of-domain corpus whenever there
is overlap. The second approach is fine-tuning the model [14, 17]:
first, train on the general domain; then, continue training for some a
smaller number of epochs on the specialized domain. This approach
emphasizes the in-domain corpus by focusing on it exclusively in
the second phase. However, after finetuning, too much knowledge
of the original domain can be lost, and advanced approaches can
be used to mitigate catastrophic forgetting [20].

All of the above methods work on the assumption that the prob-
lem formulation is the same between different datasets. In our set-
ting, however, the user feedback data is not simply more machine
translation sentence pairs. It is user preference data on machine
generated pairs. In this work, we propose a model format with two
separate loss terms for each dataset to handle these separate data
types.

3 QUERY SUGGESTION AT LINKEDIN
At LinkedIn, query suggestion is used in the product called Related
Search. In Figure 1, we show a typical search at LinkedIn, where
suggested queries are listed at the bottom of the page. Users can
click on the suggested queries to issue a new search. In the past we
have relied on a lookup-table based method whose suggestions are
precomputed by collaborative filtering with search sessions on one
dimension and queries on the other.

The primary benefit of using machine translation instead of col-
laborative filtering is that we can produce a suggestion for any
query, even unseen ones. In our production systems, it outperforms
collaborative filtering by a large margin. We tested the NMT ap-
proach relative to collaborative filtering with an offline evaluation



Figure 1: The "Related Search" product on LinkedIn mobile.
Given a query "deep learning", the suggested queries are "ma-
chine learning", "computer vision", etc.

Table 3: Offline and online results by updating from collabo-
rative filtering to sequence to sequencemodeling. All results
significant at 𝑝 < 0.05.

Metric Lift

Coverage (offline) +48%
MRR (offline) +11.1%

Job Applications (online) 0.8%
Search Sessions (online) 0.6%

of 50k queries. The coverage (proportion of queries with any sug-
gestion at all) increases by 50%, and the mean reciprocal of clicked
suggestions had a relative boost of 11%. Online, the first machine
translation based approaches boosted job applications by 0.8% site-
wide, and successful search sessions by 0.6%. We define a successful
search session as one that led to a click on an entity, and that the
user did not immediately close or click back. See Table 3 for a
summary of these results.

4 APPROACH
Given a source query 𝑠 = 𝑠1, . . . , 𝑠𝑚 consisting of a series of tokens,
the goal is to directly translate these tokens into a query suggestion
𝑡 = 𝑡1, . . . , 𝑡𝑛 . Our goal is to find a probability function 𝑝 (𝑡 |𝑠,Θ),
where Θ are model parameters, that is maximal on useful query
suggestions.

4.1 Sequence to Sequence Modeling
In this subsection, we briefly review sequence to sequence mod-
eling. Using the sequence to sequence (Seq2Seq) modeling frame-
work [19], we can produce a target sequence 𝑡 of any length from a
source sequence 𝑠 . In Seq2Seq, models have an encoder and decoder.
The encoder, typically an RNN [10, 23] or Transformer [21], takes
the input sequence and produces a fixed dimensional vector ℎ0 and
a vector for each input token, collectively denoted e. The decoder
is a function 𝑝𝑤 intended to represent the i-th target word, given
all previous target words, and the entire source sentence, using an
intermediate hidden state ℎ𝑖 :

𝑝𝑤 (𝑡𝑖 |𝑡𝑖−1, . . . , 𝑡0, 𝑠0, 𝑠1, . . . , 𝑠𝑚) := 𝑝𝑤 (𝑡𝑖 |ℎ𝑖−1, e;Θ)
The decoder is another RNN/Transformer network, coupled with

a softmax layer on each ℎ𝑖 with attention [1, 15]. If 𝐿 = 𝐿(𝑡) is the
number of words in 𝑡 , then the log probability of an entire sentence
is the sum over log probabilities for each word in the sentence:

log 𝑝 (𝑡 |𝑠) =
𝐿 (𝑡 )∑
𝑖=0

log 𝑝𝑤 (𝑡𝑖 |ℎ𝑖−1, e;Θ) (1)

See Figure 2 for an graphical overview of this model.

4.2 User Feedback Seq2Seq Model
The form of the reformulation data 𝑅 is identical sequence to se-
quence modeling inputs: it consists of query pairs ⟨𝑠, 𝑡⟩. The form
of user feedback data 𝐶 is triples ⟨𝑠𝑓 , 𝑡𝑝 , 𝑡𝑛⟩, where 𝑠𝑓 is a source
query, 𝑡𝑝 a positive clicked example, and 𝑡𝑛 a non-clicked example.
The source query does not need to line up with the reformulation
source data; this data can be collected independently. To use both
datasets to train our model, we keep the same negative log likeli-
hood loss term for our reformulation data, but we add a separate
term for the feedback data. We start with the simple desire that
clicked query suggestions should score higher than non-clicked
ones. In our case, the scores are given by Equation 1. We add a new
term to the loss term, which is similar to the pairwise loss[2, 5]:

𝐿𝑝 = −(log(𝑡𝑝 |𝑠𝑓 ) − log(𝑡𝑛 |𝑠𝑓 )) (2)

For our full loss function, we let ⟨𝑠, 𝑡⟩ ∈ 𝑅 be source and target
queries from the reformulation data 𝑅. We add to equation 2 three
parts: (1) a max switch that can disable the penalty, if the positive
query is already better; (2) a margin parameter 𝜖 , which determines
how much slack we allow before penalty occurs; and (3) a relative
weight 𝜆 which controls the strength of reformulation vs feedback
data contribution to the loss. Putting it all together, we have

𝐿 =
∑

⟨𝑠,𝑡 ⟩∈𝑅
− log 𝑝 (𝑡 |𝑠)+

𝜆
∑

⟨𝑠𝑓 ,𝑡𝑝 ,𝑡𝑛 ⟩∈𝐶
max(0, log𝑝 (𝑡𝑛 |𝑠𝑓 ) − log(𝑡𝑝 |𝑠𝑓 ) + 𝜖)

In other words, within a batch, our loss is the total cross entropy
between our expectation and prediction, plus a weighted penalty
proportional to how much an unclicked example outperforms a
clicked one. If the positive example outscores the negative by at



Figure 2: Sequence to Sequence Model
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Figure 3: Overview of the User Feedback Seq2Seq Training
routine.

least a certainmargin 𝜖 , then no penalty is incurred. For an overview
of this model, see Figure 3.

In our experiments, we use an example from 𝑅 and 𝐶 together.
To simplify experiments, we simply over-sample the smaller of 𝑅
or 𝐶 so they line up for each epoch.

4.3 Robustness via Data Augmentation
This formulation easily allows us to augment our data with negative
samples. If we know that the model wrongly promotes certain
results, such as ungrammatical, fragmented, or repetitive queries,
we can insert these as non clicked queries to teach the model to
avoid these patterns. Indeed, we have noticed our baseline models
sometimes tend to output fragmented queries (for example, queries
ending with ‘and’), or repeating somewords (e.g. ‘software engineer
and software’). We also experiment with data augmentation in this
work. To generate poor examples, we used the following simple
algorithm. For a given source query, we generate a ‘bad’ query by
appending on to the source query one of the following at random:

(1) Any random word from the source. E.g. “remote software
engineer" becomes “remote software engineer remote"

(2) Any random joiner word from ‘and’, ‘in’, ‘the’, ‘of’, ‘or’. E.g.
“software engineer" becomes "software engineer in"

(3) Any random joiner plus a word from the source, e.g. “soft-
ware engineer", becomes “software engineer and software"

For each example ⟨𝑠𝑓 , 𝑡𝑝 , 𝑡𝑛⟩ in the feedback data, we add
⟨𝑠𝑓 , 𝑡𝑝 , 𝑡bad⟩ to the data with probability 𝑝bad. This ad-hoc data
augmentation technique is merely one possible way of creating
negative samples, and more analysis is needed to understand its
effects, but it does show some qualitative impact on a subset of
queries. See Table 4.

5 ONLINE DEPLOYMENT
Our current related search online deployment serves the machine
translation model in real-time. The related search module and doc-
ument retrieval & ranking module are called in parallel; this allows
us more time to serve the model, relaxing latency requirements,
which are often a problem with deep learning models. Our system
also includes the ability to select different related search models,



Table 4: Qualitative analysis of selected queries using data augmentation. Italicized suggestions are of poor quality and can be
avoided with data augmentation.

Query Suggestions - With Data Augmentation Suggestions - Without
gls quality gls quality manager, gls qa, gls quality director,

gls quality management, gls quality assurance,
gls quality engineer

gls quality manager, gls quality director, gls
quality engineer, gls safety, gls quality manage-
ment, gls quality and quality

ted ted talks, ted conferences, ted talk, tedx, ted at,
theodore

ted talks, ted conferences, ted talk, tedx, ted ted,
ted tan

random house random house london, random house uk, pen-
guin random house, random house magazine,
random house group, random house uk ltd

penguin random house, random house mag-
azine, random house publishing, the random
house, random house random house, random
house uk

wsl world surf, world surfing, united nations, the
surf, surf, surf league

world surf, world football, world cup, wsl world,
world surfing, world world

python developer django developer, java developer, junior python
developer, django, python developer looking for,
python developer looking

django developer, django, junior python devel-
oper, python developer python, java developer,
python developer and python

both for experiment and internationalization purposes, and the abil-
ity to retrieve personal user features if the model uses any. We also
include a query suggestion caching mechanism, which can retrieve
popular queries without performing inference, though this enjoys
fewer hits when serving personalized or session aware models. See
Figure 4 for an overview of our online serving architecture.

Despite calling the suggestion module in parallel, its latency
can still be an issue for longer queries. We have carefully balanced
relevance and latency for our baseline models. Thankfully, with
our User Feedback Sequence to Sequence approach, the resulting
model has the same structure as the baseline model, and does not
increase the model’s latency.

6 EXPERIMENTS
In this section we describe our experimental setup. We perform
offline experiments to demonstrate the model’s performance in
optimizing metrics against both reformulation data and feedback
data. Afterwards, we perform online experiments to verify our
offline metrics correspond to measurable value for users.

6.1 Offline Experiments
6.1.1 Datasets. Our reformulation query pairs are collected over a
one year period and consist of 180 million query pairs for training,
and 100,000 query pairs for each of the validation and test sets. Our
click examples are collected over a 6 month period, and are filtered
by suggestions that resulted in at least one click. The final count
is approximately 17.8 million queries, each with approximately 6
suggestions, at least one of which is clicked. This yields 107 million
total feedback triples ⟨𝑠𝑓 , 𝑡𝑝 , 𝑡𝑛⟩ for our model. Our feedback test
set contains 20,000 searches, each containing 5-6 suggestions with
at least one clicked.

6.1.2 Architecture. For all experiments, we maintain the same ar-
chitecture. We use an LSTM [10] based seq2seqs model with atten-
tion [14]. We use a 100-hidden dimension, 2-layer network with a
60K vocabulary. We train with SGD, learning rate 1.0, for 2 epochs

(only 2 since our data is quite large), then begin decaying by 1
2 ten

times over two additional epochs.

6.1.3 Metrics. On all offline experiments, wemeasure (1) perplexity
on the reformulation data test set, and (2) mean reciprocal rank
(MRR) on the user feedback test set.

Perplexity is a standard measurement of the amount of ’sur-
prise’ per word. It is computed as exp

{
1
𝑁

∑𝑁
𝑗=1 − log 𝑝 𝑗

}
. This met-

ric is directly related to the log likelihood loss, and ensures the
model remembers the patterns in the data.

Mean Reciprocal Rank (MRR) [22] is evaluated by computing
the model probability score on each of 𝑘 (𝑘 = 6 in our dataset, since
we serve 6 suggestions to the user in production) suggestions for a
given source query. We sort the suggestions from high probability
to low, and find the rank of the clicked query. The final score is
the average of 1/rank. This measurement correlates with assigning
higher scores to clicked rather than unclicked suggestions, as we
desire. A low perplexity model may cluster several bad suggestions
as highly as the clicked one, but a high MRR model is less likely to
make this mistake.

6.1.4 Variants. To evaluate the impact of our method of incorpo-
rating user feedback into query suggestion, we fix the sequence
to sequence architecture to architecture described above, and vary
only the training technique. We evaluate several different baselines
for incorporating user feedback into query suggestions. The first
four models are trained on query pairs under seq2seq framework
with the standard loss (equation 1).

(1) Reformulation only. This is our baseline model, and it is
trained only on query reformulation data ⟨𝑠, 𝑡⟩ ∈ 𝑅.

(2) Feedback data only. This model is trained only on clicked
suggested queries ⟨𝑠𝑓 , 𝑡𝑝 ⟩ ∈ 𝐶 .

(3) Reformulation train + Finetune Click. The model is ini-
tialized to the reformulation only model, then fine-tuned for
one additional epoch1 on the clicked suggested queries only.

1Additional epochs worsened perplexity with no noticeable gain in MRR.
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Figure 4: Online serving architecture for query suggestion

Table 5: Offline Perplexities on Reformulation Data, Differ-
entModel Types. Clusters of statistical significancewith 95%
confidence are partitioned from each other by horizontal
lines. Systems within the lines are considered tied.

Model Perplexity
Combined data reformulation + click 13.32
Reformulation only (baseline) 13.32
User Feedback Seq2Seq 𝜆 = 0.75 aug 13.70
Reformulation train + finetune click 23.17
Feedback data only 69.21

(4) Mixed reformulation + click. This model added the
clicked queries directly into the reformulation training data
to train a new model.

(5) User Feedback Seq2Seq. This is our proposed penalty
model evaluated against the same metrics.

We also evaluate our proposed method with several of its pa-
rameters varied, in order to choose the best parameter settings to
choose for comparison. For all experiments, we supersampled from
the feedback data to turn 107 million triples into 180 million triples,
to match up with the size of the reformulation data. For all data
augmentation experiments, we use 𝑝bad = 1/3 (Section 4.3) to yield
a final feedback data size of approximately 150M examples.

6.1.5 Results and analysis. Our offline results are presented in two
tables. We do a grid search on our click model to arrive at our
highest performing model on validation set. For this task, we take
a sample of 40 million query pairs and 40 million user feedback

Table 6: Offline MRR@6 on feedback data, Different Model
Types. Clusters of statistical significance with 95% confi-
dence are partitioned from each other by horizontal lines.
Systems within the lines are considered tied.

Model MRR click
Feedback data only 0.6127
User Feedback Seq2Seq 𝜆 = 0.75 aug 0.5979
Reformulation train + finetune click 0.5953
Combined data reformulation + click 0.5744
Reformulation only (baseline) 0.5604

triples. We found that 𝜖 < 0 seemed to improve MRR. For 𝜆, we
tried 0.5, 0.75, 1.0, and 1.25, and settled on a value of 0.75.

In Tables 5 and 6, we evaluate our best performing model against
several alternatives. By using bootstrap methods, we are able to
assess confidence intervals for both perplexity and MRR. We note
that only the finetune and click-only models have significantly
worse perplexities, and that all the rest remain within 3% of each
other.

The goal of the baseline model is to minimize perplexity of the
reformulation dataset, therefore, we expect it to have the lowest
perplexity. Combining the data without duplication did not sacrifice
any perplexity. The feedback data only model achieves the highest
MRR. However, not surprisingly, its perplexity on reformulation
data is an order of magnitude worse (86.79 ppl in Table 6 versus
mid 13’s for the better models). As expected, the baseline and click
only models perform very well on their individual metrics, but not
on both.



Table 7: Offline Perplexities on Reformulation Data and MRR@6 on feedback data, Hyperparameter tuning

𝜆 𝜖 = −0.05 𝜖 = 0.0 𝜖 = 0.05

0.5 (14.56, 0.5949) (14.76, 0.5965) (14.72, 0.5931)
0.75 (14.76, 0.6014) (14.72, 0.5979) (14.80, 0.5931)
1.0 (14.95, 0.6011) (15.05, 0.6008) (14.71, 0.6002)
1.25 (15.19, 0.5959) (14.76, 0.6011) (15.08, 0.5999)

Table 8: Online improvement observed relative to the baseline (control). Bold indicates statistically significant at p<0.05.

Model Suggestion CTR Search CTR

Reformulation only (baseline) - -
Click-only +10.26% +0.17%
Fine-tune +11.50% +0.23%
Mixed reformulation and click +2.17% +0.20%
User Feedback Seq2Seq 𝜆 = 0.75 +5.14% +0.48%

The finetuned model uses both sources of data, though it nearly
doubles perplexity (from 13.21 to 23.94). Mixed reformulation +
click achieves the best perplexity, and outperforms the baseline
on MRR, but falls short of the fine-tuning and feedback data only
models. Finally, we see that User Feedback Seq2Seq sacrifices a few
relative percentage points of perplexity to the best models, and
achieves MRR in the same cluster as the fine-tuned model.

Experiments with adding negative samples had no significant
impact on model perplexity, but did reduce the MRR performance
somewhat. We did not necessarily expect any metric benefit; the
model should be easily able to optimize its performance with re-
spect to the metrics given without necessarily adding contrived
data to the training set but not the test set. We merely did this to
override the model any instinct for producing poor quality results
that evaded offline metric detection, to ensure a higher quality user
experience.

Optimizing for two objectives allows room for qualitative as-
sessment; our model is not the best on either metric, but yields
satisfactory performance on both metrics simultaneously. We con-
trast it with the the click only model which suffers from an order
of magnitude worse perplexity, and the mixed data model, which
does not yield as significant a boost to MRR.

Alternatively, we can also introduce an ad-hoc metric that com-
bines, by weighted sum, the perplexity and MRR. However, it is
difficult to decide on what exact mixture of metric is valuable for
our purposes. Instead, our real single metric that we should focus
on will be our business metric: search click-through-rate. In the
next section, we examine the model and two key variants for their
online performance.

6.2 Online Experiments
We deployed five models to a randomly sampled 10% of LinkedIn
traffic for two weeks: the baseline model, finetuned model, click-
only, mixed reformulation and click and the new seq2seq-click
𝜆 = 0.75 augmented model. In Table 8, we report performance
relative to our control (Reformulation only) model. We display two
online metrics: Suggestion CTR, which measures the click-through

rate on suggested queries only, and Search CTR, which measures
CTR@5 on documents (e.g. jobs and people profiles) shown to users
site-wide. The second is our true-north metric. It is a holistic mea-
sure of the general user experience regarding the whole search
system at LinkedIn. Providing better suggested queries can im-
prove on search CTR if the suggestions ultimately guide the user
towards what they want. Increasing suggestion CTR only amounts
to producing "click-bait". Nevertheless, it is a useful measurement
of the effects of the models. The feedback data only and finetune
models generate significantly higher amounts of user clicks on
suggested queries, but are not significantly useful to improving
user experiences. Seq2Seq-Click fares better. Its 0.48% lift is signif-
icant (𝑝 < 0.05), despite its suggestion CTR even while its lift is
5% instead of 10+%. It is interesting to note the interpretation of
the two data sources. Optimizing MRR over feedback data leads
directly to a boost in suggestion CTR. Optimizing the perplexity of
the query reformulation leads to predicting queries that users find
useful. Therefore, optimizing both leads to prioritizing queries that
are both useful and likely to be clicked.

The model was deployed in January of 2020 and has been active
at 25% of member traffic ever since, where it continues to provide
benefit to users.

7 CONCLUSION AND FUTUREWORK
7.1 Conclusion
In this paper, we have proposed a new method for jointly training
a query suggestion seq2seq model on both reformulation data and
user feedback. By measuring online performance, we see that this
enables us to offer suggestions that are both interesting and useful.

We have focused on query suggestion. In this task, a user’s
click cannot be treated as the “right" or “only" suggestion. With
respect to query length, there are exponentially many possibilities
for suggestions, and only a few are evaluated. Because of this, it is
natural to continue to train on user generated data, and only use
feedback data to guide and refine the model. The pairwise penalty
is a natural addition to our loss function to achieve this. Looking



beyond, this framework of loss plus pairwise rank term can be
applied anywhere one has access to ground truth labels and user
preferences on machine generated results.

7.2 Future Work
The most obvious future directions would be to add this model to a
fuller query suggestion framework, for example, one that incorpo-
rates search history[18], member specific features, and transformer
networks.

As a future improvement, we can gather more detailed rank-
ing information in the training data. We can rank clicked
query suggestions with document clicks higher than clicked
suggestions that only led to viewing the search results
page. Artificially poor suggestions can be more than sim-
ply ’unclicked’ suggestions, they can actually be modeled as
worse than those. In other words, we can encode a richer
relation like 𝑝 (clicked suggestion AND clicked document) >

𝑝 (clicked suggestion) > 𝑝 (not_clicked) > 𝑝 (bad). This can be
achieved by either (1) encoding each (adjacent) relationship in a
pairwise term, or by (2) moving to a list-wise ranking framework.

Finally, we can incorporate adversarial feedback into this process.
If we allow for a separate ranker model (e.g. [13]), we may be able
to build a more complete picture of user preference. Though GAN
models for text are still difficult to use successfully[3], we may be
able to relax the requirement that the ranker be "fooled" by the
generator. Care would need to be taken to avoid overfitting to the
quirks of the ranker.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine

Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1409.0473

[2] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11 (2010).

[3] Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau,
and Laurent Charlin. 2018. Language GANs Falling Short. CoRR abs/1811.02549
(2018). arXiv:1811.02549 http://arxiv.org/abs/1811.02549

[4] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and
Hang Li. 2008. Context-aware query suggestion by mining click-through and
session data. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. 875–883.

[5] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129–136.

[6] Chenhui Chu and Rui Wang. 2018. A Survey of Domain Adaptation for Neural
Machine Translation. CoRR abs/1806.00258 (2018). arXiv:1806.00258 http://arxiv.
org/abs/1806.00258

[7] Mostafa Dehghani, Sascha Rothe, Enrique Alfonseca, and Pascal Fleury. 2017.
Learning to attend, copy, and generate for session-based query suggestion. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Man-
agement. 1747–1756.

[8] Bruno M Fonseca, Paulo Golgher, Bruno Pôssas, Berthier Ribeiro-Neto, and Nivio
Ziviani. 2005. Concept-based interactive query expansion. In Proceedings of the
14th ACM international conference on Information and knowledge management.
696–703.

[9] Yunlong He, Jiliang Tang, Hua Ouyang, Changsung Kang, Dawei Yin, and Yi
Chang. 2016. Learning to rewrite queries. In Proceedings of the 25th ACM Inter-
national on Conference on Information and Knowledge Management. 1443–1452.

[10] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[11] Chien-Kang Huang, Lee-Feng Chien, and Yen-Jen Oyang. 2003. Relevant term
suggestion in interactive web search based on contextual information in query
session logs. Journal of the American Society for Information Science and Technol-
ogy 54, 7 (2003), 638–649.

[12] Ruirui Li, Liangda Li, Xian Wu, Yunhong Zhou, and Wei Wang. 2019. Click
feedback-aware query recommendation using adversarial examples. In The World
Wide Web Conference. 2978–2984.

[13] Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-Ting Sun. 2017.
Adversarial ranking for language generation. In Advances in Neural Information
Processing Systems. 3155–3165.

[14] Minh-Thang Luong and Christopher D. Manning. 2015. Stanford Neural Machine
Translation Systems for Spoken Language Domain. In International Workshop on
Spoken Language Translation. Da Nang, Vietnam.

[15] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective
Approaches to Attention-based Neural Machine Translation. In The Conference
on Empirical Methods in Natural Language Processing.

[16] Stefan Riezler and Yi Liu. 2010. Query rewriting using monolingual statistical
machine translation. Computational Linguistics 36, 3 (2010), 569–582.

[17] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving Neu-
ral Machine Translation Models with Monolingual Data. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Linguistics, Berlin, Germany, 86–96.
https://doi.org/10.18653/v1/P16-1009

[18] Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob
Grue Simonsen, and Jian-Yun Nie. 2015. A hierarchical recurrent encoder-decoder
for generative context-aware query suggestion. (2015), 553–562.

[19] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104–
3112.

[20] Brian Thompson, Jeremy Gwinnup, Huda Khayrallah, Kevin Duh, and Philipp
Koehn. 2019. Overcoming catastrophic forgetting during domain adaptation of
neural machine translation. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers). 2062–2068.

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[22] Ellen M Voorhees and Donna K Harman. 2000. The eighth text retrieval conference
(TREC-8). Technical Report.

[23] Ronald J Williams and David Zipser. 1989. A learning algorithm for continually
running fully recurrent neural networks. Neural computation 1, 2 (1989), 270–280.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1811.02549
http://arxiv.org/abs/1811.02549
http://arxiv.org/abs/1806.00258
http://arxiv.org/abs/1806.00258
http://arxiv.org/abs/1806.00258
https://doi.org/10.18653/v1/P16-1009

	Abstract
	1 Introduction
	2 Related Work
	3 Query Suggestion at LinkedIn
	4 Approach
	4.1 Sequence to Sequence Modeling
	4.2 User Feedback Seq2Seq Model
	4.3 Robustness via Data Augmentation

	5 Online Deployment
	6 Experiments
	6.1 Offline Experiments
	6.2 Online Experiments

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	References

