
A Privacy Preserving Location Based Service
System

Xinxin Zhao, Huiji Gao, Lingjun Li, Huan Liu, Guoliang Xue
Arizona State University

Abstract—Location based service is an indispensable part of
today’s mobile era. While it brings a lot of benefits to people,
the breach to individual location privacy is always a concern and
impedes the smooth development of location based service. A user
can be easily tracked once she subscribes or uses the service from
an untrusted location server. In this paper, we try to address this
problem by proposing a secure and efficient location based service
system. In our system, a user does not leak any of her location
information while she can still obtain the desired information
associated with the location. We propose a novel method to map
a user’s current location to the index of the information stored in
the location server. We demonstrated the efficiency of our system
through simulations.

I. INTRODUCTION

Smart phone market has grown very fast in the past decade.
In addition to traditional functions, such as texting and phone
calling, a powerful computing capability and high portability
grant smart phones many other functions. Among those novel
functions, location based service (LBS) is one of the most
popular and important ones. This service makes smart phones
smart by letting phones sense the environment change and
make response to the change.

Our work is motivated by one of the typical applications
of LBS — Points of Interest (POIs) recommendation. Specif-
ically, when a user stays at a new location and makes a query
regarding the location point to a LBS server, maintained by
some LBS provider, the server returns all the venues nearby
that may look interesting to the user. Furthermore, the POI
list may be sorted according to the user’s preference. In order
to transmit nearby venue information to the user, the location
server needs to know the user’s current location. However, this
gives rise to a concern of people’s location privacy breach.
With plenty of a user’s location points, a LBS provider can
easily track a user and this track is sometimes unwanted. For
example, when a user goes to see some medical specialist
or participates in a protest at a particular place, the LBS
provider will infer her health condition or easily know her
political tendency. Once a LBS provider acquires such private
information, people will loose control over their privacy and
the provider can use it in any way he likes. The provider
may sell the health information to Ads companies and the
user’s mailbox may be jammed by many spam mails. LBS
providers may also hand individual private information to
the government against users’ will, which may bring some
unwanted trouble to a user. Therefore, a privacy preserving
LBS system is necessary to address aforementioned concerns.

In this paper, we are going to propose a system to preserve
a user’s location privacy while still enable the user to retrieve
venues of interest and their information. Initially, we came up
with an area based approach. Here, the term area is divided by
their geographic relationships, e.g., zip code, etc. All venues
within the same area divided into the same group. Each venue
is assigned with a unique ID by the LBS server. An area’s
associated venue IDs and their attributes and stored in an entry
of a database in the LBS server. Knowing the index to the
entry, the user could retrieve all venue IDs within this area
using private information retrieval (PIR) [6], [16] such that the
location server does not know which area of venue IDs have
been retrieved. After retrieving all desired venue IDs, the user
run a local recommendation system to find matching venue
IDs. However, to obtain the index, a user has to maintain a
local map that outputs the index given a specific location point.
Like many off-line GPS application, this map is pre-loaded to
the smart phone.

Downloading map in advance is not as convenient as
requesting service on demand. We propose a cell site based
approach to address this issue. To connect to a cellular
network, a smart phone always keeps contact to the nearest
cell site and a cell site is usually a fixed point in a geographic
area. This inspires us to use cell site’s transmission range as
a representative of area. All venues’ information associated to
a cell site is stored in database in the server. We use a hash
table to map a cell site ID to its corresponding index. Once a
smart phone obtains a cell site ID, it computes a hash function
which gives an index in the hash table. The smart phone
invokes a PIR protocol to obtain the cell site’s database index
which is used to retrieve the venue information in another PIR
protocol execution. We remark that a cell site ID is assigned
by Federal Communications Commission (FCC) [4] and every
smart phone obtains a cell site ID when it sends probe message
to the cell site. Also, in a urban area, we have more cell sites
with smaller transmission range than that in the wild. This fact
also benefits our design since there are more POIs in urban
areas. In this paper, we focus on the cell site based approach.

The contributions of this paper can be summarized as
follows.
• We propose to use area representation to divide venues

into groups such that the user can retrieve venue IDs
while the location server does not know which area of
venue IDs have been retrieved.

• We propose to use cell site transmission range as a
representative of area such that the user does not need

to download area IDs in advance.
• We demonstrate the efficiency of our proposed system

through simulations.
The rest of our paper is organized as follows. We give the

problem definition in Section II. We introduce our system
construction in Section III. In Section IV, we demonstrate our
simulation result. We introduce the relate work in Section V
and conclude our work in Section VI.

II. PROBLEM DEFINITION

In this section, we present our system model, threat model,
and design goals.

A. System Model

Our system consists of a LBS server LS and multiple users.
The LBS server is maintained by a LBS provider, which has
an amount of venue information stored on LS. Hereafter,
we will not distinguish between LBS provider and the server
and use the two terms interchangeably. Since all intersections
are between a user and LS, we use u to denote the user
intersecting with LS. Each venue has a unique venue ID vid,
assigned by LS, and a vector of associated attributes. The
attributes consists of this venue’s information, such as the
venue type (restaurant, coffee shop, etc.), venue location, etc.
All venues IDs and their attributes are stored in LS. Each user
stores a copy of her preference profile in her smart phone. We
define a cell site ID as cid. When a user u arrives at and
wants to explore a specific place, her smart phone connects
to the nearest cell site, identifying the cell site ID cid, and
sends a index query to LS. The LBS server sends back the
index to the venue information associated with the nearest
cell site. After that, the user uses this index to retrieve the
venue information. The smart phone locally compares each
vid’s attributes with the user’s profile, sorts all vid’s according
to the user’s preference, and displays the sorting result to the
user.

B. Threat Model

The LS in this work is considered as honest but curious,
which is accordance with many security systems [5], [19]. The
LBS server honestly follows the system execution in order
to maintain its business reputation. However, it is curious
about users’ private information, e.g., location information,
search history, etc., and does whatever it can to figure out
the information. The LBS server may collect the messages
transmitted between users and itself, analyze them, and infer
users’ private information. At the same time, we assume the
cellular service carrier, also the owner of cell sites, is trusted
and honest. A carrier can always track any of its subscriber’s
location as long as they stay connected. It is impossible to
maintain privacy in the presence of a malicious carrier.

C. Design Goals

We introduce our system design goals as follows.
• Location privacy: The LBS server will not infer the user’s

location when it receives the user’s request, while the user
can retrieve the information she requested.

Fig. 1. Using cell site to group venues

• Efficiency: the system should not be computational inten-
sive and each query should be done efficiently.

III. SYSTEM CONSTRUCTION

In this section, we demonstrate our system construction.
First, we introduce the cell site based approach and briefly
introduce our system. After that, we demonstrate the PIR pro-
tocol. Finally, we give the details of our system construction.

A. Cell site based approach

As we previously introduced, in the area based approach,
a user needs to download the area ID in advance in order to
retrieve desired venues from the LBS server. In contrast, cell
site based approach does not require users to pre-download
any help data. The idea stems from the fact that all smart
phones have to connect with the nearest cell site at any time
to get service. Each cell site has certain transmission range and
spaced from 1/4 miles to 2 miles, depending on the density
of service subscribers. In the dense urban area, cell sites are
spaced from 1/4 miles to 1/2 miles. Therefore, we cluster the
venues to the nearest cell site and form an associated venue
group. Each cell site ID and its corresponding venue group
are stored in the LBS server LS. Connecting a cell site, a
smart phone knows the cell site’s ID, which can be used in
our system to retrieve the venue group.

In Figure 6, we can see that 19 venues are divided into
four groups, each of which belongs to one cell site. We note
that in the intersection of two areas, there might be venues
belonging to more than one area. However, this phenomenon
does not affect our system performance. A user may also stay
at the intersection of two or more areas. In this case, we regard
the area formed by the cell site connected to the user’s smart
phone as the query area.

As shown in Figure 2, our system has two data structures: a
hash table and a venue information table containing all venue
information. The index cind is stored in the hash table entry
indexed by the hash value of the cell site ID. Each index refers
to a row of the venue information table. We call the content

stored in a row of the venue information table as a data block.
A data block contains venue IDs and their attributes indexed
by cid. We note a venue ID and its attributes might appear
in multiple times. If a venue is in more than one area, this
venue will belong to more than one group. Given a cell site
ID, a user can calculate the hash value and get the index to
the entry. By retrieving the entry, the user gets the index to a
data block and can retrieve it from LS. Both the two retrievals
use PIR.

15
vid

16
vid

17
vid

18
vid

19
vid

Venue information

…
..

.

33
(,)cid cind

2 2
(,)cid cind

6 6
(,)cid cind

1 1
(,)cid cind

5 5
(,)cid cind

4 4
(,)cid cind

Fig. 2. Illustration of system data structure

B. Initialization

At the beginning of the system running, the LBS server
LS needs to do some initialization work. We remark that
LS needs to initialize two data sets for retrieval, the hash
table and venue information table. In our system, we need
to invoke PIR protocol for two times. The user utilizes PIR
to retrieve index cind from the hash table stored in the LBS
server. Next, using the retrieved index as input, the user uses
PIR to retrieve venue IDs and their attributes from the venue
information table. Since both retrieval are using the same
PIR, we introduce the initialization in a general way. Suppose
the total records prepared for retrieval is N . For each record
Ri(1 ≤ i ≤ N) (For convenience, we also use Ri to denote
this record’s integer representation), the LBS server chooses
a unique prime pi and a appropriate power vi = pcii , such
that Ri < vi. We note that pi is a small prime number.
Using Chinese remainder theorem, the LBS server calculates
the smallest integer e ≡ Ri mod vi(1 ≤ i ≤ N). The LBS
server publishes the integer e and all {vi}(1≤i≤N). Once the
initialization is completed, the user can proceed to query the
record stored in the LBS server.

C. Using PIR to retrieve a record

Knowing the index vi to the record Ri, a user runs the
following PIR protocol to obtain Ri.

Function: A user retrieves record from the LBS server.
Input: vi.
Output: Ri.
1 u picks the corresponding index vi to the record Ri.
2 u generates a group G and picks a group element g, such

that vi divides the order of g.
3 u computes q = |〈g〉|/vi and h1 = gq , and sends G and
g to LS.

4 LS computes h2 = ge and sends h2 to u.
5 u computes h3 = hq2 and the desired data Ri = logh1

h3,
where logh1

is the discrete logarithm base h1.

Fig. 3. PIR protocol

Figure 3 shows the PIR protocol. In Figure 3, at the last
step, the user u needs to computes a discrete logarithm to get
the record Ri. It is well known that the calculating discrete
logarithm is hard. However, it is feasible to perform the
calculation over the power of a small prime. Trivially, we can
do brute force to crack it. Or, we can employ a relatively faster
algorithm, PohligHellman algorithm [15]. There are many
ways to generate group G. We will discuss one of them in
Section IV.

Theorem 1. Using the above protocol, the user can correctly
retrieve the record Ri.

Proof: At the last step of the protocol, the user u
computes Ri = logh1

h3. The expression logh1
h3 =

logh1
hq2 = logh1

geq = logh1
g(|<g>|e/vi) = logh1

g|<g>|x ·
logh1g

Ri|<g>|/vi = Ri, where x is an integer such that
e = xvi +Ri. Thus, the theorem is proved.

D. System construction

Our system consists of two protocols: index retrieving
protocol and venue retrieving protocol. In the index retrieving
protocol, the user retrieves the data block index from the hash
table stored in the location server.

Figure 4 shows the index retrieving protocol. In this proto-
col, from her smart phone, the user learns the connected cell
site ID cidi. User u computes the hash value h(cidi), and
collaboratively run the PIR protocol with the LBS server. The
output might be several pairs of cell site ID and its index to
the venue information table due to the collision of hash value.
The user discards all other useless cell site ID and index pairs,
and picks the pair (cidi, cindi) corresponding to cidi.

Function: A user retrieves the index to a venue group
1 u acquires the cell site ID cidi.
2 u calculates h(cidi).
3 u and LS invoke the PIR protocol using h(cidi) as input.
4 From the output of PIR protocol, u picks (cidi, cindi).

Fig. 4. Index retrieving protocol

Figure 5 shows the venue retrieving protocol. This protocol

is pretty trivial. First, the user and the LBS server collabora-
tively invoke the PIR protocol. The input of the protocol is
cindi which is retrieved in the index retrieving protocol. The
output is the data block Di from the venue information table.

Function: A user retrieves venue information.
1 u and LS invoke the PIR protocol using cindi as input.
2 u gets the data block Di.

Fig. 5. Venue retrieving protocol

E. Discussion

In our proposed system, we let the user query the venues
within the area covered by her nearest cell site. Since our
system is motivated by current POI recommendation, there
might be some flaws exist in our proposed system. Users
who are near the border of the current cell site coverage
could be close to various venues in nearby cell site coverage
areas. Comparing to those venues far away from her in the
current cell site coverage, venues in nearby cell sites might be
supposed to be recommended with higher priority. To solve
this problem, we let a user’s smart phone record previous cell
site IDs the user has passed by. The user not only queries
the index corresponding to the current cell site ID, but also
queries indices corresponding to previous cell site IDs. Using
these indices as the input to the PIR protocol, the user can
retrieve as many venue as possible near the user. The number
of recorded cell site ID is defined by the user. The more cell
site ID the user records, the more venues near the user might
be retrieved. However, the system takes longer to retrieve the
venue information, and the local recommendation system also
takes longer time to sort venues. We should make a trade off
between the number of recorded cell site IDs and the system
running time.

IV. SIMULATION

In this section, we evaluated the performance of the pro-
posed approach via simulation. We implemented our approach
in C++. Crypto++5.6.2 cryptographic library is employed to
provide basic cryptographic operations, including group and
big integer operations. The implemented system was running
on a Macbook pro with 2.53GHz Intel Dual Core CPU and
4GB memory. While we have two approaches — area based
approach and cell cite based approaches, we focused and
implemented the latter approach in this section.

Here, we need to remark one thing regarding approach
implementation. When implementing the PBR protocol, we
need to construct a specific group G and a generator g for
a given π = pc [7]. Particularly, the order of the generator
r = |〈g〉| is divided by π, i.e., π|r. pi’s are the primes used by
server to as moduli for its data blocks and pi 6= 2. In addition,
the generator is a psi-generator, i.e. gcd(|G|/r,

∏
i pi) = 1 . To

generate the group, we generate two primes, Q0 = 2q0π + 1
and Q1 = 2q1d+1, such that q0, q1, and d are primes and not
previously selected as server’s moduli. The generated group

G is the multiplicative group over integer N = Q0Q1. For
g, we just randomly select an element in G and test whether
its order is divided by π. Usually, a group element’s order
is hard to calculate. However, we know N ’s Euler’s totient
φ(N) = (Q0 − 1)(Q1 − 1) = 22q0q1dπ, which makes order
calculation trivial.

Cell site number and venue number per area are two
factors that directly affect the performance of our approach.
Intuitively, increment of the two numbers will increase our
approach’s processing time. We are interesting in how much
the processing time is about to grow, from three aspects —
server’s initialization time, user’s query time, and server’s
query processing time. User’s query time includes her query
generating time and response decoding time

First, we increased cell site number from 150 to 1000 with
50 increment and the result performance of our approach is
shown in Figure 6. Obviously, the server initialization time

0 200 400 600 800 1000

0

20

40

60

80

100

120

Cell Site Number

E
x

ec
u

ti
o

n
 T

im
e

(s
)

 server init

 user query

 server query

Fig. 6. Execution time vs. cell site number

jumps when there are more than 600 cell sites handled by the
approach. It is because the server needs to find a small prime
and calculate a suitable exponent for each cell site data block.
When cell sites number gets large, this task becomes time
consuming because many small primes are consumed so that
it is not easy to find a small prime and calculate an exponent
for a large prime. Second, user query time and server query
time are nearly linear to the increment of cell site number.
Besides, the user query time is longer than server query time
because the server just does an group element exponentiation
in a query processing but a user has to generate a proper group.
The group generation involves relative primality test for N and∏

i pi. This indicates that the overhead on server side is small
and a server can handle more user’s queries and the same time.

We tested the performance of our approach under different
numbers of venue per area. Also, this will increase each entry
size of the cell site table in our approach and thus increase
the processing time for both user and server. The result is
shown in Figure 7. The number of venues grew from 50 to
500 while we kept cell site number as 400. It is clear that all
execution time increases linearly to the number of per area
venues. We notice that the server initialization time is small

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

Number of Venues in Each Area

E
x
ec

u
ti

o
n
 T

im
e

(s
)

 server init

 user query

 server query

Fig. 7. Execution time vs. number of venues per cell site area

because the number of cell sites in this test was just 400.
Similar to the previous test, the user’s processing time is bigger
than server processing time. We notice that 300 is a realistic
number for per area venues if system is designed in the way
that a user is checking venues by categories, such as restaurant,
fashion, or entertainment. A supportive fact is that one of one
of the biggest fashion malls in Phoenix area has around 250
shops. A user needs 4 minutes to obtain the information of
300 venues. Although 4-minute time looks long, we argue
that it is worthwhile to protect people’s sensitive privacy. At
the same time, the approach can improve the response time
by not feeding all the information to the users at once but
sending them part by part. When showing the first part, the
system does the queries for the remaining part.

We compared our approach with the Oblivious Transfer
(OT) based approach proposed in [17]. We note that the
difference between our approach and OT based approach lies
in the block/cell site index query phase. “Block” is the term
used in [17] which is equivalent to cell site area in our
approach. Once a user obtains an index, the following step
is the same in both approaches — invoking a PBR protocol.
The OT based approach used OT to let a user calculate an
index while our approach combines hash table and PBR to
reduce both computation and communication overhead. We
set 300 venues per area/block. The comparison is shown in
Figure 8. We can see that when the number of blocks/cell site
gets bigger than 1000, our approach is obviously faster than
OT based approach. It is because most operations of PBR are
cost on one signal data block while that of OT are cost on all
data blocks.

V. RELATED WORK

In this section, we review the area of location privacy. Prior
studies on location privacy mainly focused on privacy issues
in the traditional location based service (LBS), in which a user
sends the LBS server a location query and the server returns
the local information around the query location. An extensive
literature on location privacy utilizes the idea of K-anonymity
or location cloaking [2], [9], [14]. In this approach, a user’s

500 1000 1500

0

1

2

3

4

5

6

Number of Blocks/Cell Sites

O
n

e
Q

u
er

y
 T

im
e

(s
)

OT

Our approach

Fig. 8. Comparison between OT based approach and our approach

query is relayed by a trusted third party to the LBS server.
The trusted third party does not query the LBS server until K
different user queries are collected from the same area. In this
way, the LBS server cannot tell which user queries a specific
location. The assumption that the third party is fully trusted
by users may become a security weakness of this approach.
Kalnis et al. [11] pointed out that there exists certain scenarios
in which K-anonymity approach leaks the private location
information to malicious entities. In addition, these approaches
employ complex server query processing techniques and entail
the transmission of large quantities of intermediate results
between users and the trusted third party.

To overcome the disadvantages of cloaking-based tech-
niques, a new class of location privacy protection approaches
were proposed, which are known as transformation based
approaches. More recently, Yin et al. proposed a framework
called SpaceTwist [18] to deceive an untrusted location server
by incrementally querying nearest neighbor based on their
ascending distance from a fake point which is different from
the user’s actual location. In [12], Khoshgozaran and Shahabi
proposed to use a one-way transformation to encode the
location query and the object space. The query is evaluated
in the transformed space such that the users’ location privacy
is preserved. Their approaches do not rely on a trusted party,
but may have errors in scenarios that require exact result.

Some other works were proposed to preserve the location
privacy by using private information retrieval (PIR) [3]. Hen-
gartner proposed an architecture which utilizes PIR and trusted
computing to protect user location privacy [10]. However,
the proposed architecture is not implemented yet. Ghinita
et al. used computational PIR to enable private evaluation
of the nearest neighbour queries [8]. However, the heavy
computational overhead of the underlying PIR scheme makes
the approach unsuitable for a smart device. A fast PIR based
location privacy scheme was proposed by Khoshgozaran et
al. [13]. Their scheme requires a tamper-resistant trusted
hardware installed close to the server, which makes the scheme
less practical. Recently, Albanese et al. [1] proposed a novel

approach to detect an attacker’s location by using information
of detected malicious nodes when the attacker tries to locate
a victim in the Mobile Ad Hoc Networks.

Different from the above works, our work is motivated by
the POI recommendation, i.e., the user can automatically be
recommended with venues of interest when she gets to some
specific place. All venues are stored in the location server. The
user will not know which venues should be retrieved until the
last step. The challenge of our work is to find a way to map
venues the user might interested in to something the user could
use to communication with the location server. Fortunately, we
came up with the cell site based approach, in which the cell
site ID is used by the user to retrieve venues of interest from
the location server.

VI. CONCLUSIONS

In this paper, we have proposed a secure and efficient
location based service system by exploring private block
retrieval protocol. A user is able to retrieve information of
interest associated with the current location without leaking
the location to the service provider. We have demonstrated
the efficiency of the system via simulations.

REFERENCES

[1] M. Albanese, A. De Benedictis, S. Jajodia, and P. Shakarian, “A prob-
abilistic framework for localization of attackers in manets,” Computer
Security–ESORICS 2012, pp. 145–162, 2012.

[2] B. Bamba, L. Liu, P. Pesti, and T. Wang, “Supporting anonymous
location queries in mobile environments with privacygrid,” in WWW,
2008, pp. 237–246.

[3] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 965–981,
1998.

[4] FCC, http://www.fcc.gov/, 2014.
[5] J. Freudiger, R. Shokri, and J.-P. Hubaux, “Evaluating the privacy risk of

location-based services,” in Financial Cryptography, 2011, pp. 31–46.
[6] C. Gentry and Z. Ramzan, “Single-database private information retrieval

with constant communication rate,” in ICALP, 2005, pp. 803–815.
[7] ——, “Single-database private information retrieval with constant com-

munication rate,” in Automata, Languages and Programming. Springer,
2005, pp. 803–815.

[8] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan, “Pri-
vate queries in location based services: anonymizers are not necessary,”
in SIGMOD Conference, 2008, pp. 121–132.

[9] M. Gruteser and D. Grunwald, “Anonymous usage of location-based
services through spatial and temporal cloaking,” in MobiSys, 2003.

[10] U. Hengartner, “Hiding location information from location-based ser-
vices,” in MDM, 2007, pp. 268–272.

[11] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias, “Preserving
anonymity in location based services,” 2006.

[12] A. Khoshgozaran and C. Shahabi, “Blind evaluation of nearest neighbor
queries using space transformation to preserve location privacy,” in
SSTD, 2007, pp. 239–257.

[13] A. Khoshgozaran, C. Shahabi, and H. Shirani-Mehr, “Location privacy:
going beyond k-anonymity, cloaking and anonymizers,” Knowl. Inf.
Syst., vol. 26, no. 3, pp. 435–465, 2011.

[14] M. F. Mokbel, C.-Y. Chow, and W. G. Aref, “The new casper: Query
processing for location services without compromising privacy,” in
VLDB, 2006, pp. 763–774.

[15] R. A. Mollin, An Introduction to Cryptography, Second Edition (Discrete
Mathematics and Its Applications). CHAPMAN & HALL/CRC, 2006.

[16] R. Paulet, M. G. Kaosar, X. Yi, and E. Bertino, “Privacy-preserving and
content-protecting location based queries,” in ICDE, 2012, pp. 44–53.

[17] R. Paulet, M. G. Koasar, X. Yi, and E. Bertino, “Privacy-preserving and
content-protecting location based queries,” in Data Engineering (ICDE),
2012 IEEE 28th International Conference on. IEEE, 2012, pp. 44–53.

[18] M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu, “Spacetwist: Managing
the trade-offs among location privacy, query performance, and query
accuracy in mobile services,” in ICDE, 2008, pp. 366–375.

[19] X. Zhao, L. Li, and G. Xue, “Checking in without worries: Location
privacy in location based social networks,” in INFOCOM, 2013, pp.
3003–3011.

